Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 7 of 7 for mateixes (0.47 sec)

  1. tensorflow/c/eager/c_api_unified_experimental_test.cc

      /* Want to test simple MatMul example:
        [[0,0],    *   [[0,0],    =   [[0,0],
         [0,0]]         [0,0]]         [0,0]]
      */
    
      // Build an abstract input tensor.
      int64_t dims[] = {2, 2};  // Matrices will be 2 x 2
      int num_dims = sizeof(dims) / sizeof(dims[0]);
    
      float vals[] = {0.0f, 0.0f, 0.0f, 0.0f};
      TFE_Context* eager_ctx = TF_ExecutionContextGetTFEContext(ctx, status.get());
      TFE_TensorHandle* t =
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 39.1K bytes
    - Viewed (0)
  2. architecture/networking/controllers.md

    A queue is used to give a few properties:
    * Ability to serially process updates received from a variety of different sources. This avoids need for other synchronization mechanisms like mutexes.
    * Correctness at startup; with the sequencing above, items are only processed once all informers are synced. This means queries will not return stale data at startup.
    * Deduping of identical events
    Registered: Wed Nov 06 22:53:10 UTC 2024
    - Last Modified: Fri Feb 09 17:41:25 UTC 2024
    - 4.9K bytes
    - Viewed (0)
  3. docs/pt/docs/async.md

    * **Machine Learning**: Normalmente exige muita multiplicação de matrizes e vetores. Pense numa grande folha de papel com números e multiplicando todos eles juntos e ao mesmo tempo.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Tue Aug 06 04:48:30 UTC 2024
    - 22.2K bytes
    - Viewed (0)
  4. tensorflow/c/eager/c_api_distributed_test.cc

      TFE_DeleteContextOptions(opts);
    
      TFE_ContextSetServerDef(ctx, 0, serialized.data(), serialized.size(), status);
      EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
    
      // Use large matrices so that RPCs don't return before we get a chance
      // to call TFE_DeleteContext.
      TFE_TensorHandle* h0_task0 = TestMatrixTensorHandle100x100(ctx);
      TFE_TensorHandle* h1_task0 = TestMatrixTensorHandle100x100(ctx);
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 23.4K bytes
    - Viewed (0)
  5. docs/fr/docs/async.md

    * L'apprentissage automatique (ou **Machine Learning**) : cela nécessite de nombreuses multiplications de matrices et vecteurs. Imaginez une énorme feuille de calcul remplie de nombres que vous multiplierez entre eux tous au même moment.
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Tue Aug 06 04:48:30 UTC 2024
    - 25.4K bytes
    - Viewed (0)
  6. docs/es/docs/async.md

    * **Machine Learning**: normalmente requiere muchas multiplicaciones de "matrices" y "vectores". Imagina en una enorme hoja de cálculo con números y tener que multiplicarlos todos al mismo tiempo.
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Mon Aug 19 18:15:21 UTC 2024
    - 24.9K bytes
    - Viewed (0)
  7. RELEASE.md

        matrices or batches of matrices (CPU only).
    *   Added gradients for eigenvalues and eigenvectors computed using
        `self_adjoint_eig` or `self_adjoint_eigvals`.
    *   Eliminated `batch_*` methods for most linear algebra and FFT ops and
        promoted the non-batch version of the ops to handle batches of matrices.
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Tue Oct 22 14:33:53 UTC 2024
    - 735.3K bytes
    - Viewed (0)
Back to top