- Sort Score
- Result 10 results
- Languages All
Results 1 - 7 of 7 for mateixes (0.22 sec)
-
tensorflow/c/eager/c_api_unified_experimental_test.cc
/* Want to test simple MatMul example: [[0,0], * [[0,0], = [[0,0], [0,0]] [0,0]] [0,0]] */ // Build an abstract input tensor. int64_t dims[] = {2, 2}; // Matrices will be 2 x 2 int num_dims = sizeof(dims) / sizeof(dims[0]); float vals[] = {0.0f, 0.0f, 0.0f, 0.0f}; TFE_Context* eager_ctx = TF_ExecutionContextGetTFEContext(ctx, status.get()); TFE_TensorHandle* t =
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 39.1K bytes - Viewed (0) -
architecture/networking/controllers.md
A queue is used to give a few properties: * Ability to serially process updates received from a variety of different sources. This avoids need for other synchronization mechanisms like mutexes. * Correctness at startup; with the sequencing above, items are only processed once all informers are synced. This means queries will not return stale data at startup. * Deduping of identical events
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Fri Feb 09 17:41:25 UTC 2024 - 4.9K bytes - Viewed (0) -
docs/pt/docs/async.md
* **Machine Learning**: Normalmente exige muita multiplicação de matrizes e vetores. Pense numa grande folha de papel com números e multiplicando todos eles juntos e ao mesmo tempo.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 22.2K bytes - Viewed (0) -
tensorflow/c/eager/c_api_distributed_test.cc
TFE_DeleteContextOptions(opts); TFE_ContextSetServerDef(ctx, 0, serialized.data(), serialized.size(), status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); // Use large matrices so that RPCs don't return before we get a chance // to call TFE_DeleteContext. TFE_TensorHandle* h0_task0 = TestMatrixTensorHandle100x100(ctx); TFE_TensorHandle* h1_task0 = TestMatrixTensorHandle100x100(ctx);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 23.4K bytes - Viewed (0) -
docs/fr/docs/async.md
* L'apprentissage automatique (ou **Machine Learning**) : cela nécessite de nombreuses multiplications de matrices et vecteurs. Imaginez une énorme feuille de calcul remplie de nombres que vous multiplierez entre eux tous au même moment.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 25.4K bytes - Viewed (0) -
docs/es/docs/async.md
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Aug 19 18:15:21 UTC 2024 - 24.9K bytes - Viewed (0) -
RELEASE.md
matrices or batches of matrices (CPU only). * Added gradients for eigenvalues and eigenvectors computed using `self_adjoint_eig` or `self_adjoint_eigvals`. * Eliminated `batch_*` methods for most linear algebra and FFT ops and promoted the non-batch version of the ops to handle batches of matrices.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Oct 22 14:33:53 UTC 2024 - 735.3K bytes - Viewed (0)