Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 5 of 5 for mateixes (0.16 sec)

  1. src/main/resources/fess_indices/_aws/fess.json

    "estàveu", "esteu", "et", "etc", "ets", "fins", "fora", "gairebé", "ha", "han", "has", "havia", "he", "hem", "heu", "hi ", "ho", "i", "igual", "iguals", "ja", "l'hi", "la", "les", "li", "li'n", "llavors", "m'he", "ma", "mal", "malgrat", "mateix", "mateixa", "mateixes", "mateixos", "me", "mentre", "més", "meu", "meus", "meva", "meves", "molt", "molta", "moltes", "molts", "mon", "mons", "n'he", "n'hi", "ne", "ni", "no", "nogensmenys", "només", "nosaltres", "nostra", "nostre", "nostres", "o", "oh", "oi", "on",...
    Registered: Thu Sep 04 12:52:25 UTC 2025
    - Last Modified: Sat Jun 14 00:36:40 UTC 2025
    - 117.3K bytes
    - Viewed (0)
  2. docs/pt/docs/async.md

    * **Machine Learning**: Normalmente exige muita multiplicação de matrizes e vetores. Pense numa grande planilha com números e em multiplicar todos eles juntos e ao mesmo tempo.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 23.6K bytes
    - Viewed (0)
  3. docs/fr/docs/async.md

    * L'apprentissage automatique (ou **Machine Learning**) : cela nécessite de nombreuses multiplications de matrices et vecteurs. Imaginez une énorme feuille de calcul remplie de nombres que vous multiplierez entre eux tous au même moment.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 25.4K bytes
    - Viewed (0)
  4. docs/es/docs/async.md

    * **Machine Learning**: normalmente requiere muchas multiplicaciones de "matrices" y "vectores". Piensa en una enorme hoja de cálculo con números y multiplicando todos juntos al mismo tiempo.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 24.7K bytes
    - Viewed (0)
  5. RELEASE.md

        matrices or batches of matrices (CPU only).
    *   Added gradients for eigenvalues and eigenvectors computed using
        `self_adjoint_eig` or `self_adjoint_eigvals`.
    *   Eliminated `batch_*` methods for most linear algebra and FFT ops and
        promoted the non-batch version of the ops to handle batches of matrices.
    Registered: Tue Sep 09 12:39:10 UTC 2025
    - Last Modified: Mon Aug 18 20:54:38 UTC 2025
    - 740K bytes
    - Viewed (2)
Back to top