- Sort Score
- Result 10 results
- Languages All
Results 11 - 20 of 72 for std (0.15 sec)
-
tensorflow/c/eager/parallel_device/parallel_device_lib.cc
} } absl::optional<std::vector<std::unique_ptr<ParallelTensor>>> ParallelDevice::Join( const std::vector<PartialTensorShape>& expected_output_shapes, TF_Status* status) const { absl::optional<std::vector<std::unique_ptr<ParallelTensor>>> result; // Compute per-device per-output tensors std::vector<std::vector<TensorHandlePtr>> per_device_output_tensors;
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 25.9K bytes - Viewed (0) -
tensorflow/c/c_api_internal.h
std::vector<const char*> missing_unused_key_names; std::vector<int> missing_unused_key_indexes; // Backing memory for missing_unused_key_names values. std::vector<tensorflow::string> missing_unused_key_names_data; }; struct TF_DeviceList { std::vector<tensorflow::DeviceAttributes> response; }; struct TF_Function { tensorflow::FunctionRecord* record; };
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat May 13 00:49:12 UTC 2023 - 7.6K bytes - Viewed (0) -
manifests/addons/dashboards/lib/lib-grid.libsonnet
local rowPanels = std.filter( function(p) p.type == 'row', grouped ); local CalculateXforPanel(index, panel) = local panelsPerRow = std.floor(gridWidth / panel.gridPos.w); local col = std.mod(index, panelsPerRow); panel + { gridPos+: { x: panel.gridPos.w * col } }; local panelsBeforeRowsWithX = std.mapWithIndex(CalculateXforPanel, panelsBeforeRows);
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Tue Jun 04 18:05:06 UTC 2024 - 2.3K bytes - Viewed (0) -
tensorflow/c/c_api_function_test.cc
// outputs are as expected. // 'T' stands for 'tensor' since the outputs are tensors, not scalars. void RunT(const std::vector<std::pair<TF_Operation*, TF_Tensor*>>& inputs, std::initializer_list<TF_Output> outputs, const std::vector<std::vector<int32_t>>& expected_results) { // Create a session for this graph CSession csession(host_graph_, s_); ASSERT_EQ(TF_OK, TF_GetCode(s_)) << TF_Message(s_);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Jul 20 22:08:54 UTC 2023 - 63.6K bytes - Viewed (0) -
tensorflow/c/checkpoint_reader.h
std::unique_ptr<tensorflow::Tensor>* out_tensor, TF_Status* out_status) const; private: // Uses "v2_reader_" to build "var name -> shape" and "var name -> data type" // maps; both owned by caller. // REQUIRES: "v2_reader_ != nullptr && v2_reader_.status().ok()". std::pair<std::unique_ptr<TensorSliceReader::VarToShapeMap>,
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Oct 12 08:49:52 UTC 2023 - 3.1K bytes - Viewed (0) -
tensorflow/c/checkpoint_reader.cc
tsl::Set_TF_Status_from_Status(out_status, status); } } std::pair<std::unique_ptr<TensorSliceReader::VarToShapeMap>, std::unique_ptr<TensorSliceReader::VarToDataTypeMap>> CheckpointReader::BuildV2VarMaps() { CHECK(v2_reader_ != nullptr); CHECK(v2_reader_->status().ok()); // First pass: filters out the entries of the slices. std::unordered_set<string> filtered_keys; BundleEntryProto entry;
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 16:27:48 UTC 2024 - 5.6K bytes - Viewed (0) -
tensorflow/c/eager/gradients.cc
const string& op_name) { std::vector<int64_t> input_ids(inputs.size()); std::vector<tensorflow::DataType> input_dtypes(inputs.size()); for (int i = 0; i < inputs.size(); i++) { input_ids[i] = ToId(inputs[i]); input_dtypes[i] = inputs[i]->DataType(); } std::vector<TapeTensor> tape_tensors; tape_tensors.reserve(outputs.size()); for (auto t : outputs) {
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 19.7K bytes - Viewed (0) -
tensorflow/c/eager/c_api_test_util.cc
TFE_OpSetAttrString(op, "final_op", "Id", 2); std::vector<int64_t> subdiv_offsets; TFE_OpSetAttrIntList(op, "subdiv_offsets", subdiv_offsets.data(), subdiv_offsets.size()); return op; } TFE_Op* SendOp(TFE_Context* ctx, TFE_TensorHandle* in, const std::string& op_name, const std::string& send_device, const std::string& recv_device,
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Feb 21 22:37:46 UTC 2024 - 23.5K bytes - Viewed (0) -
tensorflow/c/c_api_experimental_test.cc
} // Checks the expected result of shape inference for the given `op`. void CheckOutputShapes( TFE_Op* op, const std::vector<absl::optional<std::vector<int64_t>>>& input_shapes_vec, const std::vector<TF_Tensor*>& input_tensors, const absl::optional<std::vector<int64_t>>& expected_shape) { // Create input_shapes. TF_ShapeAndTypeList* input_shapes =
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Jan 17 22:27:52 UTC 2023 - 13.1K bytes - Viewed (0) -
tensorflow/c/eager/c_api_test_util.h
const std::string& op_name, const std::string& send_device, const std::string& recv_device, tensorflow::uint64 send_device_incarnation); // Return a RecvOp op `op_name` with the attributes `send_device`, // `recv_device`, and `send_device_incarnation` set. TFE_Op* RecvOp(TFE_Context* ctx, const std::string& op_name,
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Jul 17 23:43:59 UTC 2023 - 7.7K bytes - Viewed (0)