- Sort Score
- Result 10 results
- Languages All
Results 251 - 260 of 332 for models3 (0.03 sec)
-
docs/es/docs/advanced/settings.md
Importa `BaseSettings` de Pydantic y crea una sub-clase, muy similar a un modelo de Pydantic. De la misma forma que con los modelos de Pydantic, declaras atributos de clase con anotaciones de tipos, y posiblemente, valores por defecto. Puedes usar todas las mismas funcionalidades de validación y herramientas que usas para los modelos de Pydantic, como diferentes tipos de datos y validaciones adicionales con `Field()`.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 13.2K bytes - Viewed (0) -
.idea/gradle.xml
<option value="$PROJECT_DIR$/platforms/core-configuration/kotlin-dsl-tooling-models" /> <option value="$PROJECT_DIR$/platforms/core-configuration/model-core" /> <option value="$PROJECT_DIR$/platforms/core-configuration/model-groovy" /> <option value="$PROJECT_DIR$/platforms/core-configuration/model-reflect" /> <option value="$PROJECT_DIR$/platforms/core-configuration/project-features" />Registered: Wed Dec 31 11:36:14 UTC 2025 - Last Modified: Thu Dec 11 18:02:10 UTC 2025 - 23.2K bytes - Viewed (0) -
docs/en/docs/tutorial/first-steps.md
{* ../../docs_src/first_steps/tutorial001_py39.py hl[8] *} You can return a `dict`, `list`, singular values as `str`, `int`, etc. You can also return Pydantic models (you'll see more about that later). There are many other objects and models that will be automatically converted to JSON (including ORMs, etc). Try using your favorite ones, it's highly probable that they are already supported.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 12.8K bytes - Viewed (0) -
docs/fr/docs/tutorial/path-params.md
/// /// tip | Astuce Pour ceux qui se demandent, "AlexNet", "ResNet", et "LeNet" sont juste des noms de <abbr title="Techniquement, des architectures de modèles">modèles</abbr> de Machine Learning. /// ### Déclarer un paramètre de chemin Créez ensuite un *paramètre de chemin* avec une annotation de type désignant l'énumération créée précédemment (`ModelName`) :
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Nov 09 16:39:20 UTC 2024 - 9.8K bytes - Viewed (0) -
docs/pt/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *} /// tip | Dica Se você está se perguntando, "AlexNet", "ResNet" e "LeNet" são apenas nomes de <abbr title="Tecnicamente, arquiteturas de modelos de Deep Learning">modelos</abbr> de Aprendizado de Máquina. /// ### Declare um parâmetro de path { #declare-a-path-parameter }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 9.8K bytes - Viewed (0) -
compat/maven-model-builder/src/main/java/org/apache/maven/model/building/Result.java
* <ol> * <li>success - in which case only the model field is set * <li>success with warnings - model field + non-error model problems * <li>error - no model, but diagnostics * <li>error - (partial) model and diagnostics * </ol> * Could encode these variants as subclasses, but kept in one for now * * @param <T> the model type * @deprecated use {@code org.apache.maven.api.services.ModelBuilder} instead
Registered: Sun Dec 28 03:35:09 UTC 2025 - Last Modified: Wed Mar 26 19:31:34 UTC 2025 - 6.9K bytes - Viewed (0) -
docs/es/docs/advanced/response-directly.md
# Devolver una Response Directamente { #return-a-response-directly } Cuando creas una *path operation* en **FastAPI**, normalmente puedes devolver cualquier dato desde ella: un `dict`, una `list`, un modelo de Pydantic, un modelo de base de datos, etc. Por defecto, **FastAPI** convertiría automáticamente ese valor de retorno a JSON usando el `jsonable_encoder` explicado en [JSON Compatible Encoder](../tutorial/encoder.md){.internal-link target=_blank}.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 3.4K bytes - Viewed (0) -
docs/pt/docs/features.md
Toda a validação é controlada pelo robusto e bem estabelecido **Pydantic**. ### Segurança e autenticação { #security-and-authentication } Segurança e autenticação integradas. Sem nenhum compromisso com bancos de dados ou modelos de dados. Todos os esquemas de seguranças definidos no OpenAPI, incluindo: * HTTP Basic.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Nov 12 16:23:57 UTC 2025 - 10.6K bytes - Viewed (0) -
docs/pt/docs/python-types.md
<img src="/img/python-types/image06.png"> Perceba que isso significa que "`one_person` é uma **instância** da classe `Person`". Isso não significa que "`one_person` é a **classe** chamada `Person`". ## Modelos Pydantic { #pydantic-models } O <a href="https://docs.pydantic.dev/" class="external-link" target="_blank">Pydantic</a> é uma biblioteca Python para executar a validação de dados.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 16.7K bytes - Viewed (0) -
docs/es/docs/python-types.md
<img src="/img/python-types/image06.png"> Nota que esto significa "`one_person` es una **instance** de la clase `Person`". No significa "`one_person` es la **clase** llamada `Person`". ## Modelos Pydantic { #pydantic-models } <a href="https://docs.pydantic.dev/" class="external-link" target="_blank">Pydantic</a> es un paquete de Python para realizar la validación de datos.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 16.4K bytes - Viewed (1)