Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 628 for Learning (0.05 sec)

  1. docs/pt/llm-prompt.md

    * cross origin: cross origin (do not translate to "origem cruzada")
    * Cross-Origin Resource Sharing: Cross-Origin Resource Sharing (do not translate to "Compartilhamento de Recursos de Origem Cruzada")
    * Deep Learning: Deep Learning (do not translate to "Aprendizado Profundo")
    * dependable: dependable
    * dependencies: dependências
    * deprecated: descontinuado
    * docs: documentação
    * FastAPI app: aplicação FastAPI
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 3.1K bytes
    - Viewed (0)
  2. docs/ru/llm-prompt.md

    * production (meaning production software or environment): продакшн (do not change the ending, for example, translate `in production` as `в продакшн` (not `в продакшене`))
    * completion (meaning code auto-completion): автозавершение
    * editor (meaning component of IDE): редактор кода
    * adopt (meaning start to use): использовать (or `начать использовать`)
    * headers (meaning HTTP-headers): HTTP-заголовки
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Oct 06 11:09:58 UTC 2025
    - 6K bytes
    - Viewed (0)
  3. docs/de/docs/_llm-test.md

    * <abbr title="Eine Methode des Machine Learning, die künstliche neuronale Netze mit zahlreichen versteckten Schichten zwischen Eingabe- und Ausgabeschicht verwendet und so eine umfassende interne Struktur entwickelt">Deep Learning</abbr>
    
    ### Das abbr gibt eine vollständige Phrase und eine Erklärung { #the-abbr-gives-a-full-phrase-and-an-explanation }
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 07:17:04 UTC 2025
    - 12.6K bytes
    - Viewed (0)
  4. docs/es/docs/async.md

    Eso, más el simple hecho de que Python es el lenguaje principal para **Data Science**, Machine Learning y especialmente Deep Learning, hacen de FastAPI una muy buena opción para APIs web de Data Science / Machine Learning y aplicaciones (entre muchas otras).
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 10:15:01 UTC 2025
    - 25.4K bytes
    - Viewed (0)
  5. docs/en/docs/advanced/events.md

    ## Use Case { #use-case }
    
    Let's start with an example **use case** and then see how to solve it with this.
    
    Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 7.9K bytes
    - Viewed (0)
  6. docs/pt/docs/advanced/events.md

    ## Caso de uso { #use-case }
    
    Vamos começar com um exemplo de **caso de uso** e então ver como resolvê-lo com isso.
    
    Vamos imaginar que você tem alguns **modelos de machine learning** que deseja usar para lidar com as requisições. 🤖
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 8.8K bytes
    - Viewed (0)
  7. docs/es/llm-prompt.md

    * 100% test coverage: cobertura de tests del 100%
    * back and forth: de un lado a otro
    * I/O (as in "input and output"): I/O (do not translate to "E/S")
    * Machine Learning: Machine Learning (do not translate to "Aprendizaje Automático")
    * Deep Learning: Deep Learning (do not translate to "Aprendizaje Profundo")
    * callback hell: callback hell (do not translate to "infierno de callbacks")
    * tip: Consejo (do not translate to "tip")
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Tue Dec 16 16:33:45 UTC 2025
    - 5.4K bytes
    - Viewed (0)
  8. docs/en/docs/tutorial/path-params.md

    {* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *}
    
    /// tip
    
    If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>.
    
    ///
    
    ### Declare a *path parameter* { #declare-a-path-parameter }
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 9.2K bytes
    - Viewed (0)
  9. docs/es/docs/tutorial/path-params.md

    /// tip | Consejo
    
    Si te estás preguntando, "AlexNet", "ResNet" y "LeNet" son solo nombres de <abbr title="Técnicamente, arquitecturas de modelos de Deep Learning">modelos</abbr> de Machine Learning.
    
    ///
    
    ### Declarar un *path parameter* { #declare-a-path-parameter }
    
    Luego crea un *path parameter* con una anotación de tipo usando la clase enum que creaste (`ModelName`):
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 9.8K bytes
    - Viewed (0)
  10. docs_src/path_params/tutorial005_py39.py

    
    app = FastAPI()
    
    
    @app.get("/models/{model_name}")
    async def get_model(model_name: ModelName):
        if model_name is ModelName.alexnet:
            return {"model_name": model_name, "message": "Deep Learning FTW!"}
    
        if model_name.value == "lenet":
            return {"model_name": model_name, "message": "LeCNN all the images"}
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 546 bytes
    - Viewed (0)
Back to top