Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 310 for ResNet (0.09 sec)

  1. docs_src/path_params/tutorial005_py39.py

    from enum import Enum
    
    from fastapi import FastAPI
    
    
    class ModelName(str, Enum):
        alexnet = "alexnet"
        resnet = "resnet"
        lenet = "lenet"
    
    
    app = FastAPI()
    
    
    @app.get("/models/{model_name}")
    async def get_model(model_name: ModelName):
        if model_name is ModelName.alexnet:
            return {"model_name": model_name, "message": "Deep Learning FTW!"}
    
        if model_name.value == "lenet":
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 546 bytes
    - Viewed (0)
  2. tests/test_tutorial/test_path_params/test_tutorial005.py

        assert response.json() == {"model_name": "lenet", "message": "LeCNN all the images"}
    
    
    def test_get_enums_resnet():
        response = client.get("/models/resnet")
        assert response.status_code == 200
        assert response.json() == {"model_name": "resnet", "message": "Have some residuals"}
    
    
    def test_get_enums_invalid():
        response = client.get("/models/foo")
        assert response.status_code == 422
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Dec 27 18:19:10 UTC 2025
    - 4.1K bytes
    - Viewed (0)
  3. docs/de/docs/tutorial/path-params.md

    {* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *}
    
    
    /// tip | Tipp
    
    Falls Sie sich fragen, was „AlexNet“, „ResNet“ und „LeNet“ ist, das sind Namen von <abbr title="Genau genommen, Deep-Learning-Modellarchitekturen">Modellen</abbr> für maschinelles Lernen.
    
    ///
    
    ### Einen *Pfad-Parameter* deklarieren { #declare-a-path-parameter }
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 10.5K bytes
    - Viewed (0)
  4. docs/ko/docs/tutorial/path-params.md

    /// info | 정보
    
    <a href="https://docs.python.org/3/library/enum.html" class="external-link" target="_blank">열거형(또는 enums)</a>은 파이썬 버전 3.4 이후로 사용 가능합니다.
    
    ///
    
    /// tip | 팁
    
    혹시 궁금하다면, "AlexNet", "ResNet", 그리고 "LeNet"은 그저 기계 학습 <abbr title="기술적으로 정확히는 딥 러닝 모델 구조">모델</abbr>들의 이름입니다.
    
    ///
    
    ### *경로 매개변수* 선언
    
    생성한 열거형 클래스(`ModelName`)를 사용하는 타입 어노테이션으로 *경로 매개변수*를 만듭니다:
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 9.6K bytes
    - Viewed (0)
  5. docs/ru/docs/tutorial/path-params.md

    Затем создайте атрибуты класса с фиксированными допустимыми значениями:
    
    {* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *}
    
    /// tip | Подсказка
    
    Если интересно, то "AlexNet", "ResNet" и "LeNet" - это названия <abbr title="Технически, архитектуры моделей глубокого обучения">моделей</abbr> Машинного обучения.
    
    ///
    
    ### Определение *параметра пути* { #declare-a-path-parameter }
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 14.2K bytes
    - Viewed (0)
  6. docs/en/docs/tutorial/path-params.md

    Then create class attributes with fixed values, which will be the available valid values:
    
    {* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *}
    
    /// tip
    
    If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>.
    
    ///
    
    ### Declare a *path parameter* { #declare-a-path-parameter }
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 9.2K bytes
    - Viewed (0)
  7. docs/es/docs/tutorial/path-params.md

    Luego crea atributos de clase con valores fijos, que serán los valores válidos disponibles:
    
    {* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *}
    
    /// tip | Consejo
    
    Si te estás preguntando, "AlexNet", "ResNet" y "LeNet" son solo nombres de <abbr title="Técnicamente, arquitecturas de modelos de Deep Learning">modelos</abbr> de Machine Learning.
    
    ///
    
    ### Declarar un *path parameter* { #declare-a-path-parameter }
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 9.8K bytes
    - Viewed (0)
  8. docs/tr/docs/tutorial/path-params.md

    ///
    
    /// tip | İpucu
    
    Merak ediyorsanız söyleyeyim, "AlexNet", "ResNet" ve "LeNet" isimleri Makine Öğrenmesi <abbr title="Teknik olarak, Derin Öğrenme model mimarileri">modellerini</abbr> temsil eder.
    
    ///
    
    ### Bir *Yol Parametresi* Tanımlayalım
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 10.5K bytes
    - Viewed (0)
  9. docs/uk/docs/tutorial/path-params.md

    <a href="https://docs.python.org/3/library/enum.html" class="external-link" target="_blank">Перелічення (або enums) доступні в Python</a> починаючи з версії 3.4.
    
    ///
    
    /// tip | Порада
    
    Якщо вам цікаво, "AlexNet", "ResNet" та "LeNet" — це просто назви ML моделей <abbr title="Технічно, архітектури Deep Learning моделей">Machine Learning</abbr>.
    
    ///
    
    
    ### Оголосіть *параметр шляху*
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 14.1K bytes
    - Viewed (0)
  10. docs/zh/docs/tutorial/path-params.md

    /// info | 说明
    
    Python 3.4 及之后版本支持<a href="https://docs.python.org/zh-cn/3/library/enum.html" class="external-link" target="_blank">枚举(即 enums)</a>。
    
    ///
    
    /// tip | 提示
    
    **AlexNet**、**ResNet**、**LeNet** 是机器学习<abbr title="技术上来说是深度学习模型架构">模型</abbr>。
    
    ///
    
    ### 声明*路径参数*
    
    使用 Enum 类(`ModelName`)创建使用类型注解的*路径参数*:
    
    {* ../../docs_src/path_params/tutorial005.py hl[16] *}
    
    ### 查看文档
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Dec 15 16:43:19 UTC 2024
    - 7.4K bytes
    - Viewed (0)
Back to top