Search Options

Results per page
Sort
Preferred Languages
Advance

Results 31 - 40 of 571 for Learning (0.08 sec)

  1. docs/ko/docs/tutorial/path-params.md

    클라이언트에 반환하기 전에 해당 값(이 경우 문자열)으로 변환됩니다:
    
    {* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *}
    
    클라이언트는 아래의 JSON 응답을 얻습니다:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## 경로를 포함하는 경로 매개변수
    
    경로를 포함하는 *경로 작동* `/files/{file_path}`이 있다고 해봅시다.
    
    그런데 이 경우 `file_path` 자체가 `home/johndoe/myfile.txt`와 같은 경로를 포함해야 합니다.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 9.6K bytes
    - Viewed (0)
  2. docs/en/docs/deployment/concepts.md

    ### Memory per Process { #memory-per-process }
    
    Now, when the program loads things in memory, for example, a machine learning model in a variable, or the contents of a large file in a variable, all that **consumes a bit of the memory (RAM)** of the server.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 18.6K bytes
    - Viewed (0)
  3. docs/tr/docs/tutorial/path-params.md

    {* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *}
    
    İstemci tarafında şuna benzer bir JSON yanıtı ile karşılaşırsınız:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## Yol İçeren Yol Parametreleri
    
    Farz edelim ki elinizde `/files/{file_path}` isminde bir *yol operasyonu* var.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 10.5K bytes
    - Viewed (0)
  4. docs/de/docs/async.md

    * **Maschinelles Lernen**: Normalerweise sind viele „Matrix“- und „Vektor“-Multiplikationen erforderlich. Stellen Sie sich eine riesige Tabelle mit Zahlen vor, in der Sie alle Zahlen gleichzeitig multiplizieren.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 26.5K bytes
    - Viewed (0)
  5. docs/en/docs/python-types.md

    **FastAPI** is all based on these type hints, they give it many advantages and benefits.
    
    But even if you never use **FastAPI**, you would benefit from learning a bit about them.
    
    /// note
    
    If you are a Python expert, and you already know everything about type hints, skip to the next chapter.
    
    ///
    
    ## Motivation { #motivation }
    
    Let's start with a simple example:
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 17.1K bytes
    - Viewed (0)
  6. docs/de/docs/deployment/concepts.md

    ### Serverspeicher
    
    Wenn Ihr Code beispielsweise ein Machine-Learning-Modell mit **1 GB Größe** lädt und Sie einen Prozess mit Ihrer API ausführen, verbraucht dieser mindestens 1 GB RAM. Und wenn Sie **4 Prozesse** (4 Worker) starten, verbraucht jeder 1 GB RAM. Insgesamt verbraucht Ihre API also **4 GB RAM**.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun May 11 13:37:26 UTC 2025
    - 20.6K bytes
    - Viewed (0)
  7. docs/tr/docs/index.md

    ## Görüşler
    
    "_[...] Bugünlerde **FastAPI**'ı çok fazla kullanıyorum. [...] Aslında bunu ekibimin **Microsoft'taki Machine Learning servislerinin** tamamında kullanmayı planlıyorum. Bunlardan bazıları **Windows**'un ana ürünlerine ve **Office** ürünlerine entegre ediliyor._"
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:49:48 UTC 2025
    - 21.9K bytes
    - Viewed (0)
  8. docs/pt/docs/deployment/concepts.md

    ### Memória do servidor
    
    Por exemplo, se seu código carrega um modelo de Machine Learning com **1 GB de tamanho**, quando você executa um processo com sua API, ele consumirá pelo menos 1 GB de RAM. E se você iniciar **4 processos** (4 trabalhadores), cada um consumirá 1 GB de RAM. Então, no total, sua API consumirá **4 GB de RAM**.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun May 11 13:37:26 UTC 2025
    - 19.7K bytes
    - Viewed (0)
  9. docs/en/docs/deployment/docker.md

    If your application is **simple**, this will probably **not be a problem**, and you might not need to specify hard memory limits. But if you are **using a lot of memory** (for example with **machine learning** models), you should check how much memory you are consuming and adjust the **number of containers** that runs in **each machine** (and maybe add more machines to your cluster).
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 29.5K bytes
    - Viewed (1)
  10. helm-releases/minio-2.0.1.tgz

    inio/blob/master/LICENSE) MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads. For more detailed documentation please visit [here](https://docs.minio.io/) Introduction ---------- This chart bootstraps MinIO Cluster on [Kubernetes](http://kubernetes.io) using the [Helm](https://helm.sh)...
    Registered: Sun Sep 07 19:28:11 UTC 2025
    - Last Modified: Tue Aug 31 09:09:09 UTC 2021
    - 13.6K bytes
    - Viewed (0)
Back to top