Search Options

Results per page
Sort
Preferred Languages
Advance

Results 31 - 40 of 631 for Learning (0.04 sec)

  1. src/main/java/org/codelibs/fess/opensearch/query/StoredLtrQueryBuilder.java

    import org.opensearch.index.query.AbstractQueryBuilder;
    import org.opensearch.index.query.QueryBuilder;
    import org.opensearch.index.query.QueryShardContext;
    
    /**
     * A query builder for a stored LTR (Learning to Rank) query.
     * This builder constructs a query that uses a pre-trained LTR model
     * to re-rank search results based on a given set of features.
     */
    Registered: Sat Dec 20 09:19:18 UTC 2025
    - Last Modified: Thu Jul 17 08:28:31 UTC 2025
    - 7.6K bytes
    - Viewed (0)
  2. docs/ja/docs/tutorial/path-params.md

    ///
    
    /// tip | 豆知識
    
    "AlexNet"、"ResNet"そして"LeNet"は機械学習<abbr title="Technically, Deep Learning model architectures">モデル</abbr>の名前です。
    
    ///
    
    ### *パスパラメータ*の宣言
    
    次に、作成したenumクラスである`ModelName`を使用した型アノテーションをもつ*パスパラメータ*を作成します:
    
    {* ../../docs_src/path_params/tutorial005.py hl[16] *}
    
    ### ドキュメントの確認
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 10.4K bytes
    - Viewed (0)
  3. docs/en/data/topic_repos.yml

      html_url: https://github.com/zhanymkanov/fastapi-best-practices
      stars: 14644
      owner_login: zhanymkanov
      owner_html_url: https://github.com/zhanymkanov
    - name: machine-learning-zoomcamp
      html_url: https://github.com/DataTalksClub/machine-learning-zoomcamp
      stars: 12320
      owner_login: DataTalksClub
      owner_html_url: https://github.com/DataTalksClub
    - name: fastapi_mcp
      html_url: https://github.com/tadata-org/fastapi_mcp
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Dec 01 13:17:29 UTC 2025
    - 16K bytes
    - Viewed (0)
  4. docs/es/docs/deployment/concepts.md

    ### Memoria por Proceso { #memory-per-process }
    
    Ahora, cuando el programa carga cosas en memoria, por ejemplo, un modelo de Machine Learning en una variable, o el contenido de un archivo grande en una variable, todo eso **consume un poco de la memoria (RAM)** del servidor.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Tue Dec 16 16:33:45 UTC 2025
    - 20.1K bytes
    - Viewed (0)
  5. docs/ko/docs/tutorial/path-params.md

    클라이언트에 반환하기 전에 해당 값(이 경우 문자열)으로 변환됩니다:
    
    {* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *}
    
    클라이언트는 아래의 JSON 응답을 얻습니다:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## 경로를 포함하는 경로 매개변수
    
    경로를 포함하는 *경로 작동* `/files/{file_path}`이 있다고 해봅시다.
    
    그런데 이 경우 `file_path` 자체가 `home/johndoe/myfile.txt`와 같은 경로를 포함해야 합니다.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 9.6K bytes
    - Viewed (0)
  6. docs/de/docs/async.md

    * **Maschinelles Lernen**: Normalerweise sind viele „Matrix“- und „Vektor“-Multiplikationen erforderlich. Stellen Sie sich eine riesige Tabelle mit Zahlen vor, in der Sie alle Zahlen gleichzeitig multiplizieren.
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Sep 20 15:10:09 UTC 2025
    - 27.9K bytes
    - Viewed (0)
  7. README.md

        "article"
    );
    suggester.indexer().indexFromDocument(reader, 4, 50);
    ```
    
    ### Search Analytics
    
    ```java
    // Track user queries for analytics
    QueryLog userQuery = new QueryLog("machine learning tutorials", "user456");
    suggester.indexer().indexFromQueryLog(userQuery);
    
    // Get trending searches
    PopularWordsResponse trending = suggester.popularWords()
        .setSize(10)
        .execute()
        .getResponse();
    Registered: Sat Dec 20 13:04:59 UTC 2025
    - Last Modified: Sun Aug 31 03:31:14 UTC 2025
    - 12.1K bytes
    - Viewed (1)
  8. docs/ru/docs/tutorial/path-params.md

    {* ../../docs_src/path_params/tutorial005_py39.py hl[18,21,23] *}
    Вы отправите клиенту такой JSON-ответ:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## Path-параметры, содержащие пути { #path-parameters-containing-paths }
    
    Предположим, что есть *операция пути* с путем `/files/{file_path}`.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 14.2K bytes
    - Viewed (0)
  9. docs/tr/docs/tutorial/path-params.md

    {* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *}
    
    İstemci tarafında şuna benzer bir JSON yanıtı ile karşılaşırsınız:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## Yol İçeren Yol Parametreleri
    
    Farz edelim ki elinizde `/files/{file_path}` isminde bir *yol operasyonu* var.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 10.5K bytes
    - Viewed (0)
  10. docs/en/docs/deployment/concepts.md

    ### Memory per Process { #memory-per-process }
    
    Now, when the program loads things in memory, for example, a machine learning model in a variable, or the contents of a large file in a variable, all that **consumes a bit of the memory (RAM)** of the server.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 18.6K bytes
    - Viewed (1)
Back to top