Search Options

Results per page
Sort
Preferred Languages
Advance

Results 31 - 40 of 809 for Learning (0.06 sec)

  1. .github/workflows/update-rbe.yml

            title: Update the RBE images to the latest container versions
            committer: TensorFlow Release Automation <******@****.***>
            token: ${{ secrets.JENKINS_TOKEN }}
            reviewers: mihaimaruseac,learning-to-play,nitins17
            body: |
              This PR was created by a GitHub Actions workflow to update all the SIG Build-based RBE containers to the most recent containers. See:
    
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Fri Nov 01 08:40:10 UTC 2024
    - 7.2K bytes
    - Viewed (0)
  2. cmd/main.go

    	app := cli.NewApp()
    	app.Name = name
    	app.Author = "MinIO, Inc."
    	app.Version = ReleaseTag
    	app.Usage = "High Performance Object Storage"
    	app.Description = `Build high performance data infrastructure for machine learning, analytics and application data workloads with MinIO`
    	app.Flags = GlobalFlags
    	app.HideHelpCommand = true // Hide `help, h` command, we already have `minio --help`.
    	app.Commands = commands
    Registered: Sun Nov 03 19:28:11 UTC 2024
    - Last Modified: Tue Jul 30 22:59:48 UTC 2024
    - 6.5K bytes
    - Viewed (0)
  3. helm/minio/README.md

    MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads.
    
    | IMPORTANT |
    | -------------------------- |
    Registered: Sun Nov 03 19:28:11 UTC 2024
    - Last Modified: Wed Jan 24 07:27:57 UTC 2024
    - 10.9K bytes
    - Viewed (0)
  4. docs/ja/docs/tutorial/path-params.md

    ///
    
    /// tip | "豆知識"
    
    "AlexNet"、"ResNet"そして"LeNet"は機械学習<abbr title="Technically, Deep Learning model architectures">モデル</abbr>の名前です。
    
    ///
    
    ### *パスパラメータ*の宣言
    
    次に、作成したenumクラスである`ModelName`を使用した型アノテーションをもつ*パスパラメータ*を作成します:
    
    ```Python hl_lines="16"
    {!../../docs_src/path_params/tutorial005.py!}
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 10.6K bytes
    - Viewed (0)
  5. docs/ko/docs/tutorial/path-params.md

    ```Python hl_lines="18  21  23"
    {!../../docs_src/path_params/tutorial005.py!}
    ```
    
    클라이언트는 아래의 JSON 응답을 얻습니다:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## 경로를 포함하는 경로 매개변수
    
    경로를 포함하는 *경로 작동* `/files/{file_path}`이 있다고 해봅시다.
    
    그런데 이 경우 `file_path` 자체가 `home/johndoe/myfile.txt`와 같은 경로를 포함해야 합니다.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 9.8K bytes
    - Viewed (0)
  6. tensorflow/c/BUILD

    # Tests
    
    tf_cuda_library(
        name = "c_test_util",
        testonly = 1,
        srcs = ["c_test_util.cc"],
        hdrs = ["c_test_util.h"],
        visibility = [
            "//learning/brain:__subpackages__",
            "//tensorflow:__subpackages__",
        ],
        deps = [
            ":c_api",
            ":c_api_experimental",
            "//tensorflow/core:lib",
            "//tensorflow/core:protos_all_cc",
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Nov 02 06:47:06 UTC 2024
    - 30.4K bytes
    - Viewed (0)
  7. docs/ru/docs/tutorial/path-params.md

    ```Python hl_lines="18  21  23"
    {!../../docs_src/path_params/tutorial005.py!}
    ```
    Вы отправите клиенту такой JSON-ответ:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## Path-параметры, содержащие пути
    
    Предположим, что есть *операция пути* с путем `/files/{file_path}`.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 14.1K bytes
    - Viewed (0)
  8. docs/en/docs/deployment/concepts.md

    ### Memory per Process
    
    Now, when the program loads things in memory, for example, a machine learning model in a variable, or the contents of a large file in a variable, all that **consumes a bit of the memory (RAM)** of the server.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Wed Sep 18 16:09:57 UTC 2024
    - 17.8K bytes
    - Viewed (0)
  9. docs/tr/docs/tutorial/path-params.md

    ```Python hl_lines="18  21  23"
    {!../../docs_src/path_params/tutorial005.py!}
    ```
    
    İstemci tarafında şuna benzer bir JSON yanıtı ile karşılaşırsınız:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## Yol İçeren Yol Parametreleri
    
    Farz edelim ki elinizde `/files/{file_path}` isminde bir *yol operasyonu* var.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 10.8K bytes
    - Viewed (0)
  10. docs/zh/docs/tutorial/path-params.md

    返回给客户端之前,要把枚举元素转换为对应的值(本例中为字符串):
    
    ```Python hl_lines="18  21  23"
    {!../../docs_src/path_params/tutorial005.py!}
    ```
    
    客户端中的 JSON 响应如下:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## 包含路径的路径参数
    
    假设*路径操作*的路径为 `/files/{file_path}`。
    
    但需要 `file_path` 中也包含*路径*,比如,`home/johndoe/myfile.txt`。
    
    此时,该文件的 URL 是这样的:`/files/home/johndoe/myfile.txt`。
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 7.6K bytes
    - Viewed (0)
Back to top