- Sort Score
- Result 10 results
- Languages All
Results 301 - 310 of 327 for models3 (0.05 sec)
-
impl/maven-cli/src/main/java/org/apache/maven/cling/invoker/mvnup/goals/PluginUpgradeStrategy.java
import org.apache.maven.api.di.Singleton; import org.apache.maven.api.model.Build; import org.apache.maven.api.model.Model; import org.apache.maven.api.model.Parent; import org.apache.maven.api.model.Plugin; import org.apache.maven.api.model.PluginManagement; import org.apache.maven.api.model.Repository; import org.apache.maven.api.model.RepositoryPolicy; import org.apache.maven.api.services.ModelBuilder;
Registered: Sun Dec 28 03:35:09 UTC 2025 - Last Modified: Tue Nov 18 18:03:26 UTC 2025 - 37K bytes - Viewed (0) -
fastapi/dependencies/utils.py
fields_to_extract = get_cached_model_fields(first_field.type_) single_not_embedded_field = True # If headers are in a Pydantic model, the way to disable convert_underscores # would be with Header(convert_underscores=False) at the Pydantic model level default_convert_underscores = getattr( first_field.field_info, "convert_underscores", True )
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 27 12:54:56 UTC 2025 - 37.6K bytes - Viewed (3) -
migrator/migrator.go
// // // CREATE VIEW `user_view` AS SELECT * FROM `users` WHERE age > 20 // q := DB.Model(&User{}).Where("age > ?", 20) // DB.Debug().Migrator().CreateView("user_view", gorm.ViewOption{Query: q}) // // // CREATE OR REPLACE VIEW `users_view` AS SELECT * FROM `users` WITH CHECK OPTION // q := DB.Model(&User{})
Registered: Sun Dec 28 09:35:17 UTC 2025 - Last Modified: Sun Oct 26 12:31:09 UTC 2025 - 29.7K bytes - Viewed (0) -
fastapi/routing.py
if annotation_is_pydantic_v1(model): raise PydanticV1NotSupportedError( "pydantic.v1 models are no longer supported by FastAPI." f" In responses={{}}, please update {model}." ) response_field = create_model_field( name=response_name, type_=model, mode="serialization" )
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 27 12:54:56 UTC 2025 - 174.6K bytes - Viewed (0) -
docs/pt/docs/async.md
### Concorrência + Paralelismo: Web + Aprendizado de Máquina { #concurrency-parallelism-web-machine-learning }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Nov 12 16:23:57 UTC 2025 - 25.8K bytes - Viewed (0) -
docs/en/docs/alternatives.md
It can't handle nested models very well. So, if the JSON body in the request is a JSON object that has inner fields that in turn are nested JSON objects, it cannot be properly documented and validated. /// check | Inspired **FastAPI** to
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Oct 11 17:48:49 UTC 2025 - 23.6K bytes - Viewed (0) -
docs/en/docs/async.md
### Concurrency + Parallelism: Web + Machine Learning { #concurrency-parallelism-web-machine-learning }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 24K bytes - Viewed (0) -
tensorflow/BUILD
"//third_party/py/tf_keras/...", "//third_party/yggdrasil_decision_forests/...", "//waymo/accelerator/...", "//waymo/ml/cn/...", "//waymo/ml/models/...", ], ) package_group( name = "ndarray_tensor_allow_list", packages = [ "//learning/gemini/gemax/...", "//third_party/py/courier/...",Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Wed Nov 12 19:21:56 UTC 2025 - 53.1K bytes - Viewed (0) -
fastapi/param_functions.py
from collections.abc import Sequence from typing import Annotated, Any, Callable, Optional, Union from annotated_doc import Doc from fastapi import params from fastapi._compat import Undefined from fastapi.openapi.models import Example from pydantic import AliasChoices, AliasPath from typing_extensions import Literal, deprecated _Unset: Any = Undefined def Path( # noqa: N802 default: Annotated[ Any, Doc(
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 27 12:54:56 UTC 2025 - 63K bytes - Viewed (0) -
docs/en/docs/deployment/docker.md
If your application is **simple**, this will probably **not be a problem**, and you might not need to specify hard memory limits. But if you are **using a lot of memory** (for example with **machine learning** models), you should check how much memory you are consuming and adjust the **number of containers** that runs in **each machine** (and maybe add more machines to your cluster).
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Sep 20 12:58:04 UTC 2025 - 29.5K bytes - Viewed (1)