Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 10 for GCD (0.03 sec)

  1. docs/distributed/DESIGN.md

    1024 drives. In this scenario 16 becomes the erasure set size. This is decided based on the greatest common divisor (GCD) of acceptable erasure set sizes ranging from *4 to 16*.
    
    - *If total drives has many common divisors the algorithm chooses the minimum amounts of erasure sets possible for a erasure set size of any N*.  In the example with 1024 drives - 4, 8, 16 are GCD factors. With 16 drives we get a total of 64 possible sets, with 8 drives we get a total of 128 possible sets, with 4...
    Registered: Sun Sep 07 19:28:11 UTC 2025
    - Last Modified: Wed Feb 26 09:25:50 UTC 2025
    - 8K bytes
    - Viewed (1)
  2. android/guava-tests/test/com/google/common/math/IntMathTest.java

          for (int b : POSITIVE_INTEGER_CANDIDATES) {
            assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(IntMath.gcd(a, b)));
          }
        }
      }
    
      public void testGCDZero() {
        for (int a : POSITIVE_INTEGER_CANDIDATES) {
          assertEquals(a, IntMath.gcd(a, 0));
          assertEquals(a, IntMath.gcd(0, a));
        }
        assertEquals(0, IntMath.gcd(0, 0));
      }
    
      public void testGCDNegativePositiveThrows() {
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Mon Aug 11 19:31:30 UTC 2025
    - 24.1K bytes
    - Viewed (0)
  3. guava-tests/test/com/google/common/math/LongMathTest.java

            assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(LongMath.gcd(a, b)));
          }
        }
      }
    
      @GwtIncompatible // TODO
      public void testGCDZero() {
        for (long a : POSITIVE_LONG_CANDIDATES) {
          assertEquals(a, LongMath.gcd(a, 0));
          assertEquals(a, LongMath.gcd(0, a));
        }
        assertEquals(0, LongMath.gcd(0, 0));
      }
    
      @GwtIncompatible // TODO
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Mon Aug 11 19:31:30 UTC 2025
    - 31.4K bytes
    - Viewed (0)
  4. guava/src/com/google/common/math/LongMath.java

        int bTwos = Long.numberOfTrailingZeros(b);
        b >>= bTwos; // divide out all 2s
        while (a != b) { // both a, b are odd
          // The key to the binary GCD algorithm is as follows:
          // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
          // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
    
          // We bend over backwards to avoid branching, adapting a technique from
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Fri Aug 29 16:20:07 UTC 2025
    - 46.8K bytes
    - Viewed (0)
  5. android/guava-tests/benchmark/com/google/common/math/ApacheBenchmark.java

            return DoubleMath.factorial(n);
          }
    
          @Override
          public int gcdInt(int a, int b) {
            return IntMath.gcd(a, b);
          }
    
          @Override
          public long gcdLong(long a, long b) {
            return LongMath.gcd(a, b);
          }
    
          @Override
          public long binomialCoefficient(int n, int k) {
            return LongMath.binomial(n, k);
          }
    
          @Override
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Mon Jul 14 14:44:08 UTC 2025
    - 6.9K bytes
    - Viewed (0)
  6. android/guava-tests/benchmark/com/google/common/math/LongMathBenchmark.java

      int mod(int reps) {
        int tmp = 0;
        for (int i = 0; i < reps; i++) {
          int j = i & ARRAY_MASK;
          tmp += LongMath.mod(longs[j], positive[j]);
        }
        return tmp;
      }
    
      @Benchmark
      int gCD(int reps) {
        int tmp = 0;
        for (int i = 0; i < reps; i++) {
          int j = i & ARRAY_MASK;
          tmp += LongMath.mod(nonnegative[j], positive[j]);
        }
        return tmp;
      }
    
      @Benchmark
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Thu Dec 19 18:03:30 UTC 2024
    - 3.5K bytes
    - Viewed (0)
  7. cmd/endpoint-ellipses.go

    // all the ellipses sizes.
    func getDivisibleSize(totalSizes []uint64) (result uint64) {
    	gcd := func(x, y uint64) uint64 {
    		for y != 0 {
    			x, y = y, x%y
    		}
    		return x
    	}
    	result = totalSizes[0]
    	for i := 1; i < len(totalSizes); i++ {
    		result = gcd(result, totalSizes[i])
    	}
    	return result
    }
    
    // isValidSetSize - checks whether given count is a valid set size for erasure coding.
    Registered: Sun Sep 07 19:28:11 UTC 2025
    - Last Modified: Fri Aug 29 02:39:48 UTC 2025
    - 14.6K bytes
    - Viewed (0)
  8. android/guava/src/com/google/common/primitives/Ints.java

        //     moved at that point. Otherwise, we can rotate the cycle a[1], a[1 + d], a[1 + 2d], etc,
        //     then a[2] etc, and so on until we have rotated all elements. There are gcd(d, n) cycles
        //     in all.
        // (3) "Successive". We can consider that we are exchanging a block of size d (a[0..d-1]) with a
        //     block of size n-d (a[d..n-1]), where in general these blocks have different sizes. If we
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Thu Aug 07 16:05:33 UTC 2025
    - 31.4K bytes
    - Viewed (0)
  9. lib/fips140/v1.0.0.zip

    57785ca45b8873032f17 GCD = 42 A = 0 B = 42 LCM = 0 GCD = 42 A = 42 B = 0 LCM = 0 GCD = 42 A = 42 B = 42 LCM = 42 GCD = f60d A = ef7886c3391407529d5c B = d1d3ec32fa3103911830 LCM = cc376ed2dc362c38a45a GCD = 9370 A = 1ee02fb1c02100d1937f B = 67432fd1482d19c4a1c2 LCM = 159ff177bdb0ffbd09e2 GCD = c5f A = 5a3a2088b5c759420ed0 B = 1b1eb33b006a98178bb3 LCM = c5cbbbe9532d30d2a7dd GCD = e052 A = 67429f79b2ec3847cfc7 B = 39faa7cbdeb78f9028c1 LCM = 1ab071fb733ef142e94d GCD = 3523 A = 0 B = 3523 LCM = 0 GCD = 3523 A = 3523...
    Registered: Tue Sep 09 11:13:09 UTC 2025
    - Last Modified: Wed Jan 29 15:10:35 UTC 2025
    - 635K bytes
    - Viewed (0)
  10. api/go1.txt

    pkg math/big, method (*Int) DivMod(*Int, *Int, *Int) (*Int, *Int)
    pkg math/big, method (*Int) Exp(*Int, *Int, *Int) *Int
    pkg math/big, method (*Int) Format(fmt.State, int32)
    pkg math/big, method (*Int) GCD(*Int, *Int, *Int, *Int) *Int
    pkg math/big, method (*Int) GobDecode([]uint8) error
    pkg math/big, method (*Int) GobEncode() ([]uint8, error)
    pkg math/big, method (*Int) Int64() int64
    Registered: Tue Sep 09 11:13:09 UTC 2025
    - Last Modified: Wed Aug 14 18:58:28 UTC 2013
    - 1.7M bytes
    - Viewed (0)
Back to top