- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 35 for factorial (0.1 sec)
-
android/guava-tests/benchmark/com/google/common/math/BigIntegerMathBenchmark.java
binomials[i] = RANDOM_SOURCE.nextInt(factorials[i] + 1); } } /** Previous version of BigIntegerMath.factorial, kept for timing purposes. */ private static BigInteger oldSlowFactorial(int n) { if (n <= 20) { return BigInteger.valueOf(LongMath.factorial(n)); } else { int k = 20; return BigInteger.valueOf(LongMath.factorial(k)).multiply(oldSlowFactorial(k, n)); } }
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Aug 19 16:21:24 UTC 2024 - 3.4K bytes - Viewed (0) -
guava-tests/benchmark/com/google/common/math/BigIntegerMathBenchmark.java
binomials[i] = RANDOM_SOURCE.nextInt(factorials[i] + 1); } } /** Previous version of BigIntegerMath.factorial, kept for timing purposes. */ private static BigInteger oldSlowFactorial(int n) { if (n <= 20) { return BigInteger.valueOf(LongMath.factorial(n)); } else { int k = 20; return BigInteger.valueOf(LongMath.factorial(k)).multiply(oldSlowFactorial(k, n)); } }
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Aug 19 16:21:24 UTC 2024 - 3.4K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/DoubleMathTest.java
double actual = BigIntegerMath.factorial(i).doubleValue(); double result = DoubleMath.factorial(i); assertThat(result).isWithin(Math.ulp(actual)).of(actual); } } public void testFactorialTooHigh() { assertThat(DoubleMath.factorial(DoubleMath.MAX_FACTORIAL + 1)).isPositiveInfinity(); assertThat(DoubleMath.factorial(DoubleMath.MAX_FACTORIAL + 20)).isPositiveInfinity(); }
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri Oct 18 15:00:32 UTC 2024 - 27.3K bytes - Viewed (0) -
guava-tests/benchmark/com/google/common/math/IntMathBenchmark.java
} @Benchmark int factorial(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += IntMath.factorial(factorial[j]); } return tmp; } @Benchmark int binomial(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += IntMath.binomial(factorial[j], binomial[j]); } return tmp;
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Dec 04 17:37:03 UTC 2017 - 3.2K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/LongMathBenchmark.java
int j = i & ARRAY_MASK; tmp += LongMath.mod(nonnegative[j], positive[j]); } return tmp; } @Benchmark int factorial(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += LongMath.factorial(factorialArguments[j]); } return tmp; } @Benchmark int binomial(int reps) { int tmp = 0;
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Dec 04 17:37:03 UTC 2017 - 3.5K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/DoubleMathBenchmark.java
tmp += Double.doubleToRawLongBits(DoubleMath.log2(positiveDoubles[j])); } return tmp; } @Benchmark long factorial(int reps) { long tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += Double.doubleToRawLongBits(DoubleMath.factorial(factorials[j])); } return tmp; } @Benchmark int isMathematicalInteger(int reps) { int tmp = 0;
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Dec 04 17:37:03 UTC 2017 - 2.5K bytes - Viewed (0) -
guava-tests/benchmark/com/google/common/math/LongMathBenchmark.java
int j = i & ARRAY_MASK; tmp += LongMath.mod(nonnegative[j], positive[j]); } return tmp; } @Benchmark int factorial(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += LongMath.factorial(factorialArguments[j]); } return tmp; } @Benchmark int binomial(int reps) { int tmp = 0;
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Dec 04 17:37:03 UTC 2017 - 3.5K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/DoubleMathTest.java
double actual = BigIntegerMath.factorial(i).doubleValue(); double result = DoubleMath.factorial(i); assertThat(result).isWithin(Math.ulp(actual)).of(actual); } } public void testFactorialTooHigh() { assertThat(DoubleMath.factorial(DoubleMath.MAX_FACTORIAL + 1)).isPositiveInfinity(); assertThat(DoubleMath.factorial(DoubleMath.MAX_FACTORIAL + 20)).isPositiveInfinity(); }
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri Oct 18 15:00:32 UTC 2024 - 27.3K bytes - Viewed (0) -
guava/src/com/google/common/math/BigIntegerMath.java
* <p>This uses an efficient binary recursive algorithm to compute the factorial with balanced * multiplies. It also removes all the 2s from the intermediate products (shifting them back in at * the end). * * @throws IllegalArgumentException if {@code n < 0} */ public static BigInteger factorial(int n) { checkNonNegative("n", n); // If the factorial is small enough, just use LongMath to do it.
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 16 17:21:56 UTC 2024 - 18.8K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/IntMathTest.java
} } // Depends on the correctness of BigIntegerMath.factorial. public void testFactorial() { for (int n = 0; n <= 50; n++) { BigInteger expectedBig = BigIntegerMath.factorial(n); int expectedInt = fitsInInt(expectedBig) ? expectedBig.intValue() : Integer.MAX_VALUE; assertEquals(expectedInt, IntMath.factorial(n)); } } public void testFactorialNegative() {
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Sat Oct 19 00:26:48 UTC 2024 - 23.1K bytes - Viewed (0)