Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 6 of 6 for gCD (0.02 sec)

  1. guava/src/com/google/common/math/LongMath.java

        int bTwos = Long.numberOfTrailingZeros(b);
        b >>= bTwos; // divide out all 2s
        while (a != b) { // both a, b are odd
          // The key to the binary GCD algorithm is as follows:
          // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
          // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
    
          // We bend over backwards to avoid branching, adapting a technique from
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Fri Aug 29 16:20:07 UTC 2025
    - 46.8K bytes
    - Viewed (0)
  2. android/guava-tests/test/com/google/common/math/IntMathTest.java

          for (int b : POSITIVE_INTEGER_CANDIDATES) {
            assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(IntMath.gcd(a, b)));
          }
        }
      }
    
      public void testGCDZero() {
        for (int a : POSITIVE_INTEGER_CANDIDATES) {
          assertEquals(a, IntMath.gcd(a, 0));
          assertEquals(a, IntMath.gcd(0, a));
        }
        assertEquals(0, IntMath.gcd(0, 0));
      }
    
      public void testGCDNegativePositiveThrows() {
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Mon Aug 11 19:31:30 UTC 2025
    - 24.1K bytes
    - Viewed (0)
  3. android/guava-tests/benchmark/com/google/common/math/ApacheBenchmark.java

            return DoubleMath.factorial(n);
          }
    
          @Override
          public int gcdInt(int a, int b) {
            return IntMath.gcd(a, b);
          }
    
          @Override
          public long gcdLong(long a, long b) {
            return LongMath.gcd(a, b);
          }
    
          @Override
          public long binomialCoefficient(int n, int k) {
            return LongMath.binomial(n, k);
          }
    
          @Override
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Mon Jul 14 14:44:08 UTC 2025
    - 6.9K bytes
    - Viewed (0)
  4. guava-tests/test/com/google/common/math/LongMathTest.java

            assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(LongMath.gcd(a, b)));
          }
        }
      }
    
      @GwtIncompatible // TODO
      public void testGCDZero() {
        for (long a : POSITIVE_LONG_CANDIDATES) {
          assertEquals(a, LongMath.gcd(a, 0));
          assertEquals(a, LongMath.gcd(0, a));
        }
        assertEquals(0, LongMath.gcd(0, 0));
      }
    
      @GwtIncompatible // TODO
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Mon Aug 11 19:31:30 UTC 2025
    - 31.4K bytes
    - Viewed (0)
  5. android/guava-tests/benchmark/com/google/common/math/LongMathBenchmark.java

      int mod(int reps) {
        int tmp = 0;
        for (int i = 0; i < reps; i++) {
          int j = i & ARRAY_MASK;
          tmp += LongMath.mod(longs[j], positive[j]);
        }
        return tmp;
      }
    
      @Benchmark
      int gCD(int reps) {
        int tmp = 0;
        for (int i = 0; i < reps; i++) {
          int j = i & ARRAY_MASK;
          tmp += LongMath.mod(nonnegative[j], positive[j]);
        }
        return tmp;
      }
    
      @Benchmark
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Thu Dec 19 18:03:30 UTC 2024
    - 3.5K bytes
    - Viewed (0)
  6. android/guava/src/com/google/common/primitives/Ints.java

        //     moved at that point. Otherwise, we can rotate the cycle a[1], a[1 + d], a[1 + 2d], etc,
        //     then a[2] etc, and so on until we have rotated all elements. There are gcd(d, n) cycles
        //     in all.
        // (3) "Successive". We can consider that we are exchanging a block of size d (a[0..d-1]) with a
        //     block of size n-d (a[d..n-1]), where in general these blocks have different sizes. If we
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Thu Aug 07 16:05:33 UTC 2025
    - 31.4K bytes
    - Viewed (0)
Back to top