- Sort Score
- Result 10 results
- Languages All
Results 1 - 9 of 9 for GCD (0.03 sec)
-
docs/distributed/DESIGN.md
1024 drives. In this scenario 16 becomes the erasure set size. This is decided based on the greatest common divisor (GCD) of acceptable erasure set sizes ranging from *4 to 16*. - *If total drives has many common divisors the algorithm chooses the minimum amounts of erasure sets possible for a erasure set size of any N*. In the example with 1024 drives - 4, 8, 16 are GCD factors. With 16 drives we get a total of 64 possible sets, with 8 drives we get a total of 128 possible sets, with 4...
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Wed Feb 26 09:25:50 UTC 2025 - 8K bytes - Viewed (1) -
android/guava-tests/test/com/google/common/math/IntMathTest.java
for (int b : POSITIVE_INTEGER_CANDIDATES) { assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(IntMath.gcd(a, b))); } } } public void testGCDZero() { for (int a : POSITIVE_INTEGER_CANDIDATES) { assertEquals(a, IntMath.gcd(a, 0)); assertEquals(a, IntMath.gcd(0, a)); } assertEquals(0, IntMath.gcd(0, 0)); } public void testGCDNegativePositiveThrows() {
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Aug 11 19:31:30 UTC 2025 - 24.1K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/LongMathTest.java
assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(LongMath.gcd(a, b))); } } } @GwtIncompatible // TODO public void testGCDZero() { for (long a : POSITIVE_LONG_CANDIDATES) { assertEquals(a, LongMath.gcd(a, 0)); assertEquals(a, LongMath.gcd(0, a)); } assertEquals(0, LongMath.gcd(0, 0)); } @GwtIncompatible // TODO
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Aug 11 19:31:30 UTC 2025 - 31.4K bytes - Viewed (0) -
guava/src/com/google/common/math/LongMath.java
int bTwos = Long.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. // We bend over backwards to avoid branching, adapting a technique from
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Fri Aug 29 16:20:07 UTC 2025 - 46.8K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/ApacheBenchmark.java
return DoubleMath.factorial(n); } @Override public int gcdInt(int a, int b) { return IntMath.gcd(a, b); } @Override public long gcdLong(long a, long b) { return LongMath.gcd(a, b); } @Override public long binomialCoefficient(int n, int k) { return LongMath.binomial(n, k); } @Override
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Jul 14 14:44:08 UTC 2025 - 6.9K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/LongMathBenchmark.java
int mod(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += LongMath.mod(longs[j], positive[j]); } return tmp; } @Benchmark int gCD(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += LongMath.mod(nonnegative[j], positive[j]); } return tmp; } @Benchmark
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 3.5K bytes - Viewed (0) -
cmd/endpoint-ellipses.go
// all the ellipses sizes. func getDivisibleSize(totalSizes []uint64) (result uint64) { gcd := func(x, y uint64) uint64 { for y != 0 { x, y = y, x%y } return x } result = totalSizes[0] for i := 1; i < len(totalSizes); i++ { result = gcd(result, totalSizes[i]) } return result } // isValidSetSize - checks whether given count is a valid set size for erasure coding.
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Fri Aug 29 02:39:48 UTC 2025 - 14.6K bytes - Viewed (0) -
android/guava/src/com/google/common/primitives/Ints.java
// moved at that point. Otherwise, we can rotate the cycle a[1], a[1 + d], a[1 + 2d], etc, // then a[2] etc, and so on until we have rotated all elements. There are gcd(d, n) cycles // in all. // (3) "Successive". We can consider that we are exchanging a block of size d (a[0..d-1]) with a // block of size n-d (a[d..n-1]), where in general these blocks have different sizes. If we
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Aug 07 16:05:33 UTC 2025 - 31.4K bytes - Viewed (0) -
lib/fips140/v1.0.0.zip
57785ca45b8873032f17 GCD = 42 A = 0 B = 42 LCM = 0 GCD = 42 A = 42 B = 0 LCM = 0 GCD = 42 A = 42 B = 42 LCM = 42 GCD = f60d A = ef7886c3391407529d5c B = d1d3ec32fa3103911830 LCM = cc376ed2dc362c38a45a GCD = 9370 A = 1ee02fb1c02100d1937f B = 67432fd1482d19c4a1c2 LCM = 159ff177bdb0ffbd09e2 GCD = c5f A = 5a3a2088b5c759420ed0 B = 1b1eb33b006a98178bb3 LCM = c5cbbbe9532d30d2a7dd GCD = e052 A = 67429f79b2ec3847cfc7 B = 39faa7cbdeb78f9028c1 LCM = 1ab071fb733ef142e94d GCD = 3523 A = 0 B = 3523 LCM = 0 GCD = 3523 A = 3523...
Registered: Tue Sep 09 11:13:09 UTC 2025 - Last Modified: Wed Jan 29 15:10:35 UTC 2025 - 635K bytes - Viewed (0)