- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 109 for deep (0.02 sec)
-
docs/pt/llm-prompt.md
* cross origin: cross origin (do not translate to "origem cruzada") * Cross-Origin Resource Sharing: Cross-Origin Resource Sharing (do not translate to "Compartilhamento de Recursos de Origem Cruzada") * Deep Learning: Deep Learning (do not translate to "Aprendizado Profundo") * dependable: dependable * dependencies: dependências * deprecated: descontinuado * docs: documentação * FastAPI app: aplicação FastAPI
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 3.1K bytes - Viewed (0) -
docs/es/llm-prompt.md
* back and forth: de un lado a otro * I/O (as in "input and output"): I/O (do not translate to "E/S") * Machine Learning: Machine Learning (do not translate to "Aprendizaje Automático") * Deep Learning: Deep Learning (do not translate to "Aprendizaje Profundo") * callback hell: callback hell (do not translate to "infierno de callbacks") * tip: Consejo (do not translate to "tip")
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Dec 16 16:33:45 UTC 2025 - 5.4K bytes - Viewed (0) -
docs_src/path_params/tutorial005_py39.py
lenet = "lenet" app = FastAPI() @app.get("/models/{model_name}") async def get_model(model_name: ModelName): if model_name is ModelName.alexnet: return {"model_name": model_name, "message": "Deep Learning FTW!"} if model_name.value == "lenet": return {"model_name": model_name, "message": "LeCNN all the images"}
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 546 bytes - Viewed (0) -
docs/de/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *} /// tip | Tipp Falls Sie sich fragen, was „AlexNet“, „ResNet“ und „LeNet“ ist, das sind Namen von <abbr title="Genau genommen, Deep-Learning-Modellarchitekturen">Modellen</abbr> für maschinelles Lernen. /// ### Einen *Pfad-Parameter* deklarieren { #declare-a-path-parameter }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 10.5K bytes - Viewed (0) -
tests/test_tutorial/test_path_params/test_tutorial005.py
client = TestClient(app) def test_get_enums_alexnet(): response = client.get("/models/alexnet") assert response.status_code == 200 assert response.json() == {"model_name": "alexnet", "message": "Deep Learning FTW!"} def test_get_enums_lenet(): response = client.get("/models/lenet") assert response.status_code == 200 assert response.json() == {"model_name": "lenet", "message": "LeCNN all the images"}
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 27 18:19:10 UTC 2025 - 4.1K bytes - Viewed (0) -
docs/de/docs/_llm-test.md
* <abbr title="Eine Methode des Machine Learning, die künstliche neuronale Netze mit zahlreichen versteckten Schichten zwischen Eingabe- und Ausgabeschicht verwendet und so eine umfassende interne Struktur entwickelt">Deep Learning</abbr> ### Das abbr gibt eine vollständige Phrase und eine Erklärung { #the-abbr-gives-a-full-phrase-and-an-explanation }
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 07:17:04 UTC 2025 - 12.6K bytes - Viewed (0) -
docs/en/docs/tutorial/dependencies/sub-dependencies.md
# Sub-dependencies { #sub-dependencies } You can create dependencies that have **sub-dependencies**. They can be as **deep** as you need them to be. **FastAPI** will take care of solving them. ## First dependency "dependable" { #first-dependency-dependable } You could create a first dependency ("dependable") like: {* ../../docs_src/dependencies/tutorial005_an_py310.py hl[8:9] *}Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 3.7K bytes - Viewed (0) -
docs/en/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *} /// tip If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>. /// ### Declare a *path parameter* { #declare-a-path-parameter } Then create a *path parameter* with a type annotation using the enum class you created (`ModelName`):Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 9.2K bytes - Viewed (0) -
docs/es/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *} /// tip | Consejo Si te estás preguntando, "AlexNet", "ResNet" y "LeNet" son solo nombres de <abbr title="Técnicamente, arquitecturas de modelos de Deep Learning">modelos</abbr> de Machine Learning. /// ### Declarar un *path parameter* { #declare-a-path-parameter }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 9.8K bytes - Viewed (0) -
docs/pt/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *} /// tip | Dica Se você está se perguntando, "AlexNet", "ResNet" e "LeNet" são apenas nomes de <abbr title="Tecnicamente, arquiteturas de modelos de Deep Learning">modelos</abbr> de Aprendizado de Máquina. /// ### Declare um parâmetro de path { #declare-a-path-parameter }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 9.8K bytes - Viewed (0)