- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 29 for factorial (0.06 sec)
-
android/guava-tests/benchmark/com/google/common/math/BigIntegerMathBenchmark.java
binomials[i] = RANDOM_SOURCE.nextInt(factorials[i] + 1); } } /** Previous version of BigIntegerMath.factorial, kept for timing purposes. */ private static BigInteger oldSlowFactorial(int n) { if (n <= 20) { return BigInteger.valueOf(LongMath.factorial(n)); } else { int k = 20; return BigInteger.valueOf(LongMath.factorial(k)).multiply(oldSlowFactorial(k, n)); } }
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 3.5K bytes - Viewed (0) -
guava-tests/benchmark/com/google/common/math/BigIntegerMathBenchmark.java
binomials[i] = RANDOM_SOURCE.nextInt(factorials[i] + 1); } } /** Previous version of BigIntegerMath.factorial, kept for timing purposes. */ private static BigInteger oldSlowFactorial(int n) { if (n <= 20) { return BigInteger.valueOf(LongMath.factorial(n)); } else { int k = 20; return BigInteger.valueOf(LongMath.factorial(k)).multiply(oldSlowFactorial(k, n)); } }
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 3.5K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/DoubleMathBenchmark.java
tmp += Double.doubleToRawLongBits(DoubleMath.log2(positiveDoubles[j])); } return tmp; } @Benchmark long factorial(int reps) { long tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += Double.doubleToRawLongBits(DoubleMath.factorial(factorials[j])); } return tmp; } @Benchmark int isMathematicalInteger(int reps) { int tmp = 0;
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 2.6K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/DoubleMathTest.java
double actual = BigIntegerMath.factorial(i).doubleValue(); double result = DoubleMath.factorial(i); assertThat(result).isWithin(Math.ulp(actual)).of(actual); } } public void testFactorialTooHigh() { assertThat(DoubleMath.factorial(DoubleMath.MAX_FACTORIAL + 1)).isPositiveInfinity(); assertThat(DoubleMath.factorial(DoubleMath.MAX_FACTORIAL + 20)).isPositiveInfinity(); }
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Aug 07 16:05:33 UTC 2025 - 27.3K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/BigIntegerMathTest.java
} // Depends on the correctness of BigIntegerMath.factorial private static void runBinomialTest(int firstN, int lastN) { for (int n = firstN; n <= lastN; n++) { for (int k = 0; k <= n; k++) { BigInteger expected = BigIntegerMath.factorial(n) .divide(BigIntegerMath.factorial(k)) .divide(BigIntegerMath.factorial(n - k));
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Aug 07 16:05:33 UTC 2025 - 27K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/LongMathBenchmark.java
int j = i & ARRAY_MASK; tmp += LongMath.mod(nonnegative[j], positive[j]); } return tmp; } @Benchmark int factorial(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += LongMath.factorial(factorialArguments[j]); } return tmp; } @Benchmark int binomial(int reps) { int tmp = 0;
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 3.5K bytes - Viewed (0) -
guava/src/com/google/common/math/BigIntegerMath.java
* <p>This uses an efficient binary recursive algorithm to compute the factorial with balanced * multiplies. It also removes all the 2s from the intermediate products (shifting them back in at * the end). * * @throws IllegalArgumentException if {@code n < 0} */ public static BigInteger factorial(int n) { checkNonNegative("n", n); // If the factorial is small enough, just use LongMath to do it.
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Aug 07 16:05:33 UTC 2025 - 18.8K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/ApacheBenchmark.java
* * @author Louis Wasserman */ @NullUnmarked public class ApacheBenchmark { private enum Impl { GUAVA { @Override public double factorialDouble(int n) { return DoubleMath.factorial(n); } @Override public int gcdInt(int a, int b) { return IntMath.gcd(a, b); } @Override public long gcdLong(long a, long b) {
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Jul 14 14:44:08 UTC 2025 - 6.9K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/LongMathTest.java
long expected = 1; for (int i = 0; i < LongMath.factorials.length; i++, expected *= i) { assertEquals(expected, LongMath.factorials[i]); } assertThrows( ArithmeticException.class, () -> LongMath.checkedMultiply( LongMath.factorials[LongMath.factorials.length - 1], LongMath.factorials.length)); } @GwtIncompatible // TODO
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Aug 11 19:31:30 UTC 2025 - 31.4K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/IntMathTest.java
} } // Depends on the correctness of BigIntegerMath.factorial. public void testFactorial() { for (int n = 0; n <= 50; n++) { BigInteger expectedBig = BigIntegerMath.factorial(n); int expectedInt = fitsInInt(expectedBig) ? expectedBig.intValue() : Integer.MAX_VALUE; assertEquals(expectedInt, IntMath.factorial(n)); } } public void testFactorialNegative() {
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Aug 11 19:31:30 UTC 2025 - 24.1K bytes - Viewed (0)