Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 278 for Learning (0.15 sec)

  1. docs/es/docs/advanced/events.md

    ## Caso de Uso
    
    Empecemos con un ejemplo de **caso de uso** y luego veamos cómo resolverlo con esto.
    
    Imaginemos que tienes algunos **modelos de machine learning** que quieres usar para manejar requests. 🤖
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Dec 30 18:26:57 UTC 2024
    - 8.2K bytes
    - Viewed (0)
  2. docs/es/llm-prompt.md

    * 100% test coverage: cobertura de tests del 100%
    * back and forth: de un lado a otro
    * I/O (as in "input and output"): I/O (do not translate to "E/S")
    * Machine Learning: Machine Learning (do not translate to "Aprendizaje Automático")
    * Deep Learning: Deep Learning (do not translate to "Aprendizaje Profundo")
    * callback hell: callback hell (do not translate to "infierno de callbacks")
    * tip: Consejo (do not translate to "tip")
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sat Jul 26 18:57:50 UTC 2025
    - 5.3K bytes
    - Viewed (0)
  3. docs/en/docs/advanced/events.md

    ## Use Case { #use-case }
    
    Let's start with an example **use case** and then see how to solve it with this.
    
    Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 7.9K bytes
    - Viewed (0)
  4. docs/id/docs/tutorial/path-params.md

    ///
    
    /// tip | Tips
    
    "AlxexNet", "ResNet", dan "LeNet" adalah nama <abbr title="Secara teknis, arsitektur model Deep Learning">model</abbr> *Machine Learning*.
    
    ///
    
    ### Mendeklarasikan *parameter path*
    
    Kemudian buat *parameter path* dengan tipe anotasi menggunakan *class* enum dari (`ModelName`)
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 8.8K bytes
    - Viewed (0)
  5. CITATION.cff

    cff-version: 1.2.0
    message: "If you use TensorFlow in your research, please cite it using these metadata. Software is available from tensorflow.org."
    title: TensorFlow, Large-scale machine learning on heterogeneous systems
    Registered: Tue Sep 09 12:39:10 UTC 2025
    - Last Modified: Mon Sep 06 15:26:23 UTC 2021
    - 3.5K bytes
    - Viewed (0)
  6. docs/en/docs/tutorial/body-fields.md

    You can declare extra information in `Field`, `Query`, `Body`, etc. And it will be included in the generated JSON Schema.
    
    You will learn more about adding extra information later in the docs, when learning to declare examples.
    
    /// warning
    
    Extra keys passed to `Field` will also be present in the resulting OpenAPI schema for your application.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 2.3K bytes
    - Viewed (0)
  7. docs/en/docs/tutorial/path-params.md

    ///
    
    /// tip
    
    If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>.
    
    ///
    
    ### Declare a *path parameter* { #declare-a-path-parameter }
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 9.3K bytes
    - Viewed (0)
  8. docs/es/docs/tutorial/path-params.md

    ///
    
    /// tip | Consejo
    
    Si te estás preguntando, "AlexNet", "ResNet" y "LeNet" son solo nombres de <abbr title="Técnicamente, arquitecturas de modelos de Deep Learning">modelos</abbr> de Machine Learning.
    
    ///
    
    ### Declarar un *path parameter*
    
    Luego crea un *path parameter* con una anotación de tipo usando la clase enum que creaste (`ModelName`):
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 9.4K bytes
    - Viewed (0)
  9. SECURITY.md

    ## TensorFlow models are programs
    
    TensorFlow
    [**models**](https://developers.google.com/machine-learning/glossary/#model) (to
    use a term commonly used by machine learning practitioners) are expressed as
    programs that TensorFlow executes. TensorFlow programs are encoded as
    computation
    [**graphs**](https://developers.google.com/machine-learning/glossary/#graph).
    Since models are practically programs that TensorFlow executes, using untrusted
    Registered: Tue Sep 09 12:39:10 UTC 2025
    - Last Modified: Wed Oct 16 16:10:43 UTC 2024
    - 9.6K bytes
    - Viewed (0)
  10. docs/lambda/README.md

    cat > testobject << EOF
    MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads.
    EOF
    ```
    
    Upload this object to the bucket via `mc cp`
    ```
    mc cp testobject myminio/functionbucket/
    ```
    
    ## Invoke Lambda transformation via PresignedGET
    Registered: Sun Sep 07 19:28:11 UTC 2025
    - Last Modified: Tue Aug 12 18:20:36 UTC 2025
    - 7.7K bytes
    - Viewed (0)
Back to top