- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 305 for Learning (0.04 sec)
-
docs/pt/llm-prompt.md
* cross origin: cross origin (do not translate to "origem cruzada") * Cross-Origin Resource Sharing: Cross-Origin Resource Sharing (do not translate to "Compartilhamento de Recursos de Origem Cruzada") * Deep Learning: Deep Learning (do not translate to "Aprendizado Profundo") * dependable: dependable * dependencies: dependências * deprecated: descontinuado * docs: documentação * FastAPI app: aplicação FastAPI
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 3.1K bytes - Viewed (0) -
docs/ru/llm-prompt.md
* production (meaning production software or environment): продакшн (do not change the ending, for example, translate `in production` as `в продакшн` (not `в продакшене`)) * completion (meaning code auto-completion): автозавершение * editor (meaning component of IDE): редактор кода * adopt (meaning start to use): использовать (or `начать использовать`) * headers (meaning HTTP-headers): HTTP-заголовки
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Mon Oct 06 11:09:58 UTC 2025 - 6K bytes - Viewed (0) -
docs/en/docs/advanced/events.md
## Use Case { #use-case } Let's start with an example **use case** and then see how to solve it with this. Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 7.9K bytes - Viewed (0) -
docs/pt/docs/advanced/events.md
## Caso de uso { #use-case } Vamos começar com um exemplo de **caso de uso** e então ver como resolvê-lo com isso. Vamos imaginar que você tem alguns **modelos de machine learning** que deseja usar para lidar com as requisições. 🤖Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 8.8K bytes - Viewed (0) -
docs/es/llm-prompt.md
* 100% test coverage: cobertura de tests del 100% * back and forth: de un lado a otro * I/O (as in "input and output"): I/O (do not translate to "E/S") * Machine Learning: Machine Learning (do not translate to "Aprendizaje Automático") * Deep Learning: Deep Learning (do not translate to "Aprendizaje Profundo") * callback hell: callback hell (do not translate to "infierno de callbacks") * tip: Consejo (do not translate to "tip")
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Dec 16 16:33:45 UTC 2025 - 5.4K bytes - Viewed (0) -
docs/en/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *} /// tip If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>. /// ### Declare a *path parameter* { #declare-a-path-parameter }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 9.2K bytes - Viewed (0) -
docs_src/path_params/tutorial005_py39.py
app = FastAPI() @app.get("/models/{model_name}") async def get_model(model_name: ModelName): if model_name is ModelName.alexnet: return {"model_name": model_name, "message": "Deep Learning FTW!"} if model_name.value == "lenet": return {"model_name": model_name, "message": "LeCNN all the images"}
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 546 bytes - Viewed (0) -
docs/es/docs/advanced/events.md
## Caso de Uso { #use-case } Empecemos con un ejemplo de **caso de uso** y luego veamos cómo resolverlo con esto. Imaginemos que tienes algunos **modelos de machine learning** que quieres usar para manejar requests. 🤖Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 8.5K bytes - Viewed (0) -
docs/tr/docs/project-generation.md
... müsaitliğime ve diğer faktörlere bağlı olarak daha sonra gelebilir. 😅 🎉 ## Machine Learning modelleri, spaCy ve FastAPI GitHub: <a href="https://github.com/microsoft/cookiecutter-spacy-fastapi" class="external-link" target="_blank">https://github.com/microsoft/cookiecutter-spacy-fastapi</a> ### Machine Learning modelleri, spaCy ve FastAPI - Features * **spaCy** NER model entegrasyonu.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Mon Jul 29 23:35:07 UTC 2024 - 6K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/score/LtrQueryRescorer.java
import org.codelibs.fess.util.ComponentUtil; import org.opensearch.search.rescore.QueryRescorerBuilder; import org.opensearch.search.rescore.RescorerBuilder; /** * Learning to Rank query rescorer implementation. */ public class LtrQueryRescorer implements QueryRescorer { /** * Default constructor. */ public LtrQueryRescorer() { // Default constructorRegistered: Sat Dec 20 09:19:18 UTC 2025 - Last Modified: Thu Jul 17 08:28:31 UTC 2025 - 1.7K bytes - Viewed (0)