Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 305 for Learning (0.04 sec)

  1. docs/pt/llm-prompt.md

    * cross origin: cross origin (do not translate to "origem cruzada")
    * Cross-Origin Resource Sharing: Cross-Origin Resource Sharing (do not translate to "Compartilhamento de Recursos de Origem Cruzada")
    * Deep Learning: Deep Learning (do not translate to "Aprendizado Profundo")
    * dependable: dependable
    * dependencies: dependências
    * deprecated: descontinuado
    * docs: documentação
    * FastAPI app: aplicação FastAPI
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 3.1K bytes
    - Viewed (0)
  2. docs/ru/llm-prompt.md

    * production (meaning production software or environment): продакшн (do not change the ending, for example, translate `in production` as `в продакшн` (not `в продакшене`))
    * completion (meaning code auto-completion): автозавершение
    * editor (meaning component of IDE): редактор кода
    * adopt (meaning start to use): использовать (or `начать использовать`)
    * headers (meaning HTTP-headers): HTTP-заголовки
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Oct 06 11:09:58 UTC 2025
    - 6K bytes
    - Viewed (0)
  3. docs/en/docs/advanced/events.md

    ## Use Case { #use-case }
    
    Let's start with an example **use case** and then see how to solve it with this.
    
    Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 7.9K bytes
    - Viewed (0)
  4. docs/pt/docs/advanced/events.md

    ## Caso de uso { #use-case }
    
    Vamos começar com um exemplo de **caso de uso** e então ver como resolvê-lo com isso.
    
    Vamos imaginar que você tem alguns **modelos de machine learning** que deseja usar para lidar com as requisições. 🤖
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 8.8K bytes
    - Viewed (0)
  5. docs/es/llm-prompt.md

    * 100% test coverage: cobertura de tests del 100%
    * back and forth: de un lado a otro
    * I/O (as in "input and output"): I/O (do not translate to "E/S")
    * Machine Learning: Machine Learning (do not translate to "Aprendizaje Automático")
    * Deep Learning: Deep Learning (do not translate to "Aprendizaje Profundo")
    * callback hell: callback hell (do not translate to "infierno de callbacks")
    * tip: Consejo (do not translate to "tip")
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Tue Dec 16 16:33:45 UTC 2025
    - 5.4K bytes
    - Viewed (0)
  6. docs/en/docs/tutorial/path-params.md

    {* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *}
    
    /// tip
    
    If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>.
    
    ///
    
    ### Declare a *path parameter* { #declare-a-path-parameter }
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 9.2K bytes
    - Viewed (0)
  7. docs_src/path_params/tutorial005_py39.py

    
    app = FastAPI()
    
    
    @app.get("/models/{model_name}")
    async def get_model(model_name: ModelName):
        if model_name is ModelName.alexnet:
            return {"model_name": model_name, "message": "Deep Learning FTW!"}
    
        if model_name.value == "lenet":
            return {"model_name": model_name, "message": "LeCNN all the images"}
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 546 bytes
    - Viewed (0)
  8. docs/es/docs/advanced/events.md

    ## Caso de Uso { #use-case }
    
    Empecemos con un ejemplo de **caso de uso** y luego veamos cómo resolverlo con esto.
    
    Imaginemos que tienes algunos **modelos de machine learning** que quieres usar para manejar requests. 🤖
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 8.5K bytes
    - Viewed (0)
  9. docs/tr/docs/project-generation.md

    ... müsaitliğime ve diğer faktörlere bağlı olarak daha sonra gelebilir. 😅 🎉
    
    ## Machine Learning modelleri, spaCy ve FastAPI
    
    GitHub: <a href="https://github.com/microsoft/cookiecutter-spacy-fastapi" class="external-link" target="_blank">https://github.com/microsoft/cookiecutter-spacy-fastapi</a>
    
    ### Machine Learning modelleri, spaCy ve FastAPI - Features
    
    * **spaCy** NER model entegrasyonu.
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Jul 29 23:35:07 UTC 2024
    - 6K bytes
    - Viewed (0)
  10. src/main/java/org/codelibs/fess/score/LtrQueryRescorer.java

    import org.codelibs.fess.util.ComponentUtil;
    import org.opensearch.search.rescore.QueryRescorerBuilder;
    import org.opensearch.search.rescore.RescorerBuilder;
    
    /**
     * Learning to Rank query rescorer implementation.
     */
    public class LtrQueryRescorer implements QueryRescorer {
    
        /**
         * Default constructor.
         */
        public LtrQueryRescorer() {
            // Default constructor
    Registered: Sat Dec 20 09:19:18 UTC 2025
    - Last Modified: Thu Jul 17 08:28:31 UTC 2025
    - 1.7K bytes
    - Viewed (0)
Back to top