Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 263 for Learning (0.14 sec)

  1. docs/es/llm-prompt.md

    * 100% test coverage: cobertura de tests del 100%
    * back and forth: de un lado a otro
    * I/O (as in "input and output"): I/O (do not translate to "E/S")
    * Machine Learning: Machine Learning (do not translate to "Aprendizaje Automático")
    * Deep Learning: Deep Learning (do not translate to "Aprendizaje Profundo")
    * callback hell: callback hell (do not translate to "infierno de callbacks")
    * tip: Consejo (do not translate to "tip")
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sat Jul 26 18:57:50 UTC 2025
    - 5.3K bytes
    - Viewed (0)
  2. docs/en/docs/advanced/events.md

    ## Use Case { #use-case }
    
    Let's start with an example **use case** and then see how to solve it with this.
    
    Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 7.9K bytes
    - Viewed (0)
  3. docs/id/docs/tutorial/path-params.md

    ///
    
    /// tip | Tips
    
    "AlxexNet", "ResNet", dan "LeNet" adalah nama <abbr title="Secara teknis, arsitektur model Deep Learning">model</abbr> *Machine Learning*.
    
    ///
    
    ### Mendeklarasikan *parameter path*
    
    Kemudian buat *parameter path* dengan tipe anotasi menggunakan *class* enum dari (`ModelName`)
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 8.8K bytes
    - Viewed (0)
  4. docs/es/docs/advanced/events.md

    ## Caso de Uso
    
    Empecemos con un ejemplo de **caso de uso** y luego veamos cómo resolverlo con esto.
    
    Imaginemos que tienes algunos **modelos de machine learning** que quieres usar para manejar requests. 🤖
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Dec 30 18:26:57 UTC 2024
    - 8.2K bytes
    - Viewed (0)
  5. docs/en/docs/tutorial/path-params.md

    ///
    
    /// tip
    
    If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>.
    
    ///
    
    ### Declare a *path parameter* { #declare-a-path-parameter }
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 9.3K bytes
    - Viewed (0)
  6. docs/es/docs/tutorial/path-params.md

    ///
    
    /// tip | Consejo
    
    Si te estás preguntando, "AlexNet", "ResNet" y "LeNet" son solo nombres de <abbr title="Técnicamente, arquitecturas de modelos de Deep Learning">modelos</abbr> de Machine Learning.
    
    ///
    
    ### Declarar un *path parameter*
    
    Luego crea un *path parameter* con una anotación de tipo usando la clase enum que creaste (`ModelName`):
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 9.4K bytes
    - Viewed (0)
  7. docs/em/docs/tutorial/path-params.md

    <a href="https://docs.python.org/3/library/enum.html" class="external-link" target="_blank">🔢 (⚖️ 🔢) 💪 🐍</a> ↩️ ⏬ 3️⃣.4️⃣.
    
    ///
    
    /// tip
    
    🚥 👆 💭, "📊", "🎓", &amp; "🍏" 📛 🎰 🏫 <abbr title="Technically, Deep Learning model architectures">🏷</abbr>.
    
    ///
    
    ### 📣 *➡ 🔢*
    
    ⤴️ ✍ *➡ 🔢* ⏮️ 🆎 ✍ ⚙️ 🔢 🎓 👆 ✍ (`ModelName`):
    
    {* ../../docs_src/path_params/tutorial005.py hl[16] *}
    
    ### ✅ 🩺
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 7.5K bytes
    - Viewed (0)
  8. docs/tr/docs/project-generation.md

    ... müsaitliğime ve diğer faktörlere bağlı olarak daha sonra gelebilir. 😅 🎉
    
    ## Machine Learning modelleri, spaCy ve FastAPI
    
    GitHub: <a href="https://github.com/microsoft/cookiecutter-spacy-fastapi" class="external-link" target="_blank">https://github.com/microsoft/cookiecutter-spacy-fastapi</a>
    
    ### Machine Learning modelleri, spaCy ve FastAPI - Features
    
    * **spaCy** NER model entegrasyonu.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Jul 29 23:35:07 UTC 2024
    - 6K bytes
    - Viewed (0)
  9. docs/lambda/README.md

    cat > testobject << EOF
    MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads.
    EOF
    ```
    
    Upload this object to the bucket via `mc cp`
    ```
    mc cp testobject myminio/functionbucket/
    ```
    
    ## Invoke Lambda transformation via PresignedGET
    Registered: Sun Sep 07 19:28:11 UTC 2025
    - Last Modified: Tue Aug 12 18:20:36 UTC 2025
    - 7.7K bytes
    - Viewed (0)
  10. docs/pt/docs/tutorial/path-params.md

    ///
    
    /// tip | Dica
    
    
    
    ///
    
    	Se você está se perguntando, "AlexNet", "ResNet", e "LeNet" são apenas nomes de <abbr title="técnicamente, modelos de arquitetura de Deep Learning">modelos</abbr> de Machine Learning (aprendizado de máquina).
    
    ### Declare um *parâmetro de rota*
    
    Logo, crie um *parâmetro de rota* com anotações de tipo usando a classe enum que você criou (`ModelName`):
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 9.6K bytes
    - Viewed (0)
Back to top