- Sort Score
- Result 10 results
- Languages All
Results 101 - 110 of 218 for algorithm (0.1 sec)
-
guava/src/com/google/common/hash/Fingerprint2011.java
import com.google.common.annotations.VisibleForTesting; /** * Implementation of Geoff Pike's fingerprint2011 hash function. See {@link Hashing#fingerprint2011} * for information on the behaviour of the algorithm. * * <p>On Intel Core2 2.66, on 1000 bytes, fingerprint2011 takes 0.9 microseconds compared to * fingerprint at 4.0 microseconds and md5 at 4.5 microseconds. *
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Tue Dec 28 17:50:25 UTC 2021 - 6.5K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/collect/BinaryTreeTraverserBenchmark.java
for (int i = 0; i < size; i++) { keys[i] = rng.nextInt(); } return createTreap(Ints.asList(keys)); } // See http://en.wikipedia.org/wiki/Treap for details on the algorithm. private Optional<BinaryNode> createTreap(List<Integer> keys) { if (keys.isEmpty()) { return Optional.absent(); } int minIndex = 0; for (int i = 1; i < keys.size(); i++) {
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Tue Feb 26 19:18:53 UTC 2019 - 4.9K bytes - Viewed (0) -
guava-tests/benchmark/com/google/common/collect/BinaryTreeTraverserBenchmark.java
for (int i = 0; i < size; i++) { keys[i] = rng.nextInt(); } return createTreap(Ints.asList(keys)); } // See http://en.wikipedia.org/wiki/Treap for details on the algorithm. private Optional<BinaryNode> createTreap(List<Integer> keys) { if (keys.isEmpty()) { return Optional.absent(); } int minIndex = 0; for (int i = 1; i < keys.size(); i++) {
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Tue Feb 26 19:18:53 UTC 2019 - 4.9K bytes - Viewed (0) -
android/guava/src/com/google/common/collect/Collections2.java
} /** * Returns a {@link Collection} of all the permutations of the specified {@link Iterable}. * * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri Oct 18 20:24:49 UTC 2024 - 22.8K bytes - Viewed (0) -
docs/de/docs/tutorial/security/oauth2-jwt.md
09d25e094faa6ca2556c818166b7a9563b93f7099f6f0f4caa6cf63b88e8d3e7 ``` </div> Und kopieren Sie die Ausgabe in die Variable `SECRET_KEY` (verwenden Sie nicht die im Beispiel). Erstellen Sie eine Variable `ALGORITHM` für den Algorithmus, der zum Signieren des JWT-Tokens verwendet wird, und setzen Sie sie auf `"HS256"`. Erstellen Sie eine Variable für das Ablaufdatum des Tokens.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 15K bytes - Viewed (0) -
guava/src/com/google/common/collect/Collections2.java
} /** * Returns a {@link Collection} of all the permutations of the specified {@link Iterable}. * * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri Oct 18 20:24:49 UTC 2024 - 23.1K bytes - Viewed (0) -
internal/lsync/lrwmutex.go
const ( lockRetryInterval = 50 * time.Millisecond ) // lockLoop will acquire either a read or a write lock // // The call will block until the lock is granted using a built-in // timing randomized back-off algorithm to try again until successful func (lm *LRWMutex) lockLoop(ctx context.Context, id, source string, timeout time.Duration, isWriteLock bool) (locked bool) { r := rand.New(rand.NewSource(time.Now().UnixNano()))
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Sun Jan 02 17:15:06 UTC 2022 - 4.8K bytes - Viewed (0) -
docs/compression/README.md
MinIO uses [`klauspost/compress/s2`](https://github.com/klauspost/compress/tree/master/s2) streaming compression due to its stability and performance. This algorithm is specifically optimized for machine generated content. Write throughput is typically at least 500MB/s per CPU core, and scales with the number of available CPU cores. Decompression speed is typically at least 1GB/s.
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Mon Mar 11 11:55:34 UTC 2024 - 5.1K bytes - Viewed (0) -
docs/ftp/README.md
### Custom Algorithms (SFTP) Custom algorithms can be specified via command line parameters. Algorithms are comma separated. Note that valid values does not in all cases represent default values. `--sftp=pub-key-algos=...` specifies the supported client public key authentication algorithms. Note that this doesn't include certificate types
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Tue May 07 06:41:25 UTC 2024 - 7.8K bytes - Viewed (0) -
docs/erasure/README.md
## What is Erasure Code?
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Thu Sep 29 04:28:45 UTC 2022 - 4.1K bytes - Viewed (0)