- Sort Score
- Result 10 results
- Languages All
Results 1091 - 1100 of 1,169 for def2 (0.04 sec)
-
tensorflow/api_template_v1.__init__.py
_site_packages_dirs = list(set(_site_packages_dirs)) # Find the location of this exact file. _current_file_location = _inspect.getfile(_inspect.currentframe()) def _running_from_pip_package(): return any( _current_file_location.startswith(dir_) for dir_ in _site_packages_dirs) if _running_from_pip_package(): # TODO(gunan): Add sanity checks to loaded modules here.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Oct 02 22:16:02 UTC 2024 - 7.5K bytes - Viewed (0) -
docs/en/docs/tutorial/request-files.md
For example, inside of an `async` *path operation function* you can get the contents with: ```Python contents = await myfile.read() ``` If you are inside of a normal `def` *path operation function*, you can access the `UploadFile.file` directly, for example: ```Python contents = myfile.file.read() ``` /// note | "`async` Technical Details"
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 10.2K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib_test.cc
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 15.6K bytes - Viewed (0) -
okhttp/src/test/java/okhttp3/internal/tls/CertificatePinnerChainValidationTest.kt
Registered: Fri Nov 01 11:42:11 UTC 2024 - Last Modified: Mon Jan 08 01:13:22 UTC 2024 - 23.8K bytes - Viewed (0) -
docs/ja/docs/tutorial/dependencies/sub-dependencies.md
高度なシナリオでは、「キャッシュされた」値を使うのではなく、同じリクエストの各ステップ(おそらく複数回)で依存関係を呼び出す必要があることがわかっている場合、`Depens`を使用する際に、`use_cache=False`というパラメータを設定することができます。 ```Python hl_lines="1" async def needy_dependency(fresh_value: str = Depends(get_value, use_cache=False)): return {"fresh_value": fresh_value} ``` ## まとめ ここで使われている派手な言葉は別にして、**依存性注入** システムは非常にシンプルです。 *path operation関数*と同じように見えるただの関数です。
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 4.4K bytes - Viewed (0) -
docs/em/docs/tutorial/request-files.md
* `close()`: 🔐 📁. 🌐 👫 👩🔬 `async` 👩🔬, 👆 💪 "⌛" 👫. 🖼, 🔘 `async` *➡ 🛠️ 🔢* 👆 💪 🤚 🎚 ⏮️: ```Python contents = await myfile.read() ``` 🚥 👆 🔘 😐 `def` *➡ 🛠️ 🔢*, 👆 💪 🔐 `UploadFile.file` 🔗, 🖼: ```Python contents = myfile.file.read() ``` /// note | "`async` 📡 ℹ" 🕐❔ 👆 ⚙️ `async` 👩🔬, **FastAPI** 🏃 📁 👩🔬 🧵 & ⌛ 👫. ///
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 6.6K bytes - Viewed (0) -
docs/lambda/README.md
pip install flask requests ``` Following is an example lambda handler. ```py from flask import Flask, request, abort, make_response import requests app = Flask(__name__) @app.route('/', methods=['POST']) def get_webhook(): if request.method == 'POST': # obtain the request event from the 'POST' call event = request.json object_context = event["getObjectContext"] # Get the presigned URL to fetch the requested
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Tue Apr 04 19:15:28 UTC 2023 - 7.6K bytes - Viewed (0) -
docs/zh/docs/advanced/settings.md
从磁盘中读取文件通常是一项耗时的(慢)操作,因此您可能希望仅在首次读取后并重复使用相同的设置对象,而不是为每个请求都读取它。 但是,每次执行以下操作: ```Python Settings() ``` 都会创建一个新的 `Settings` 对象,并且在创建时会再次读取 `.env` 文件。 如果依赖项函数只是这样的: ```Python def get_settings(): return Settings() ``` 我们将为每个请求创建该对象,并且将在每个请求中读取 `.env` 文件。 ⚠️ 但是,由于我们在顶部使用了 `@lru_cache` 装饰器,因此只有在第一次调用它时,才会创建 `Settings` 对象一次。 ✔️ //// tab | Python 3.9+
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 13.8K bytes - Viewed (0) -
docs/pt/docs/advanced/settings.md
```Python Settings() ``` um novo objeto `Settings` é instanciado, e durante a instanciação, o arquivo `.env` é lido novamente. Se a função da dependência fosse apenas: ```Python def get_settings(): return Settings() ``` Iriamos criar um novo objeto a cada requisição, e estaríamos lendo o arquivo `.env` a cada requisição. ⚠️
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 17K bytes - Viewed (0) -
docs/fr/docs/features.md
```Python from datetime import date from pydantic import BaseModel # Déclare une variable comme étant une str # et profitez de l'aide de votre IDE dans cette fonction def main(user_id: str): return user_id # Un modèle Pydantic class User(BaseModel): id: int name: str joined: date ``` Qui peuvent ensuite être utilisés comme cela: ```Python
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 11.1K bytes - Viewed (0)