Search Options

Results per page
Sort
Preferred Languages
Advance

Results 91 - 100 of 216 for cpui (0.05 sec)

  1. .github/workflows/arm-ci-extended-cpp.yml

              CI_DOCKER_BUILD_EXTRA_PARAMS="--build-arg py_major_minor_version=${{ matrix.pyver }} --build-arg is_nightly=${is_nightly} --build-arg tf_project_name=${tf_project_name}" \
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Fri Nov 01 08:40:10 UTC 2024
    - 2.5K bytes
    - Viewed (0)
  2. docs/pt/docs/deployment/docker.md

    O **número de processos** nesta imagem é **calculado automaticamente** a partir dos **núcleos de CPU** disponíveis.
    
    Isso significa que ele tentará **aproveitar** o máximo de **desempenho** da CPU possível.
    
    Você também pode ajustá-lo com as configurações usando **variáveis de ambiente**, etc.
    
    Mas isso também significa que, como o número de processos depende da CPU do contêiner em execução, a **quantidade de memória consumida** também dependerá disso.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Mon Aug 12 21:47:53 UTC 2024
    - 37.4K bytes
    - Viewed (0)
  3. android/guava/src/com/google/common/collect/CompactLinkedHashMap.java

     * java.util.LinkedHashMap}. Generally speaking, this class reduces object allocation and memory
     * consumption at the price of moderately increased constant factors of CPU. Only use this class
     * when there is a specific reason to prioritize memory over CPU.
     *
     * @author Louis Wasserman
     */
    @J2ktIncompatible // no support for access-order mode in LinkedHashMap delegate
    @GwtIncompatible // not worth using in GWT for now
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Mon Apr 01 16:15:01 UTC 2024
    - 8.5K bytes
    - Viewed (0)
  4. guava/src/com/google/common/collect/CompactLinkedHashSet.java

     * java.util.LinkedHashSet}. Generally speaking, this class reduces object allocation and memory
     * consumption at the price of moderately increased constant factors of CPU. Only use this class
     * when there is a specific reason to prioritize memory over CPU.
     *
     * @author Louis Wasserman
     */
    @GwtIncompatible // not worth using in GWT for now
    @ElementTypesAreNonnullByDefault
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Tue Jul 09 00:15:47 UTC 2024
    - 9.7K bytes
    - Viewed (0)
  5. .github/workflows/arm-cd.yml

              CI_DOCKER_BUILD_EXTRA_PARAMS="--build-arg py_major_minor_version=${{ matrix.pyver }} --build-arg is_nightly=${is_nightly} --build-arg tf_project_name=${tf_project_name}" \
              ./tensorflow/tools/ci_build/ci_build.sh cpu.arm64 bash tensorflow/tools/ci_build/rel/ubuntu/cpu_arm64_test_build.sh
          - name: Upload pip wheel to PyPI
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Fri Nov 01 08:40:10 UTC 2024
    - 3K bytes
    - Viewed (0)
  6. cmd/utils.go

    		if n := runtime.NumGoroutine(); n > 10000 && !globalIsCICD {
    			return nil, fmt.Errorf("unable to perform CPU IO profile with %d goroutines", n)
    		}
    		dirPath, err := os.MkdirTemp("", "profile")
    		if err != nil {
    			return nil, err
    		}
    		fn := filepath.Join(dirPath, "cpuio.out")
    		f, err := Create(fn)
    		if err != nil {
    			return nil, err
    		}
    		stop := fgprof.Start(f, fgprof.FormatPprof)
    Registered: Sun Nov 03 19:28:11 UTC 2024
    - Last Modified: Tue Aug 13 22:22:04 UTC 2024
    - 31.9K bytes
    - Viewed (0)
  7. compat/maven-embedder/src/test/java/org/apache/maven/cli/MavenCliTest.java

            assertThrows(IllegalArgumentException.class, () -> cli.calculateDegreeOfConcurrency("XXXC"));
    
            int cpus = Runtime.getRuntime().availableProcessors();
            assertEquals((int) (cpus * 2.2), cli.calculateDegreeOfConcurrency("2.2C"));
            assertEquals(1, cli.calculateDegreeOfConcurrency("0.0001C"));
    Registered: Sun Nov 03 03:35:11 UTC 2024
    - Last Modified: Fri Oct 25 12:31:46 UTC 2024
    - 30.3K bytes
    - Viewed (0)
  8. tensorflow/c/eager/c_api_experimental_test.cc

            ctx, name, TF_FLOAT, dims, 2, data, size, &Deleter, copy, status);
        CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
        TFE_TensorHandle* on_host =
            TFE_TensorHandleCopyToDevice(copy_aliased, ctx, "CPU:0", status);
        CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
        TF_Tensor* resolved = TFE_TensorHandleResolve(on_host, status);
        CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Thu Aug 03 03:14:26 UTC 2023
    - 31.5K bytes
    - Viewed (0)
  9. docs/ko/docs/async.md

    이 시나리오에서, (당신을 포함한) 각각의 청소부들은 프로세서가 될 것이고, 각자의 역할을 수행합니다.
    
    실행 시간의 대부분이 대기가 아닌 실제 작업에 소요되고, 컴퓨터에서 작업은 <abbr title="Central Processing Unit">CPU</abbr>에서 이루어지므로, 이러한 문제를 "CPU에 묶였"다고 합니다.
    
    ---
    
    CPU에 묶인 연산에 관한 흔한 예시는 복잡한 수학 처리를 필요로 하는 경우입니다.
    
    예를 들어:
    
    * **오디오** 또는 **이미지** 처리.
    * **컴퓨터 비전**: 하나의 이미지는 수백개의 픽셀로 구성되어있고, 각 픽셀은 3개의 값 / 색을 갖고 있으며, 일반적으로 해당 픽셀들에 대해 동시에 무언가를 계산해야하는 처리.
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Tue Aug 06 04:48:30 UTC 2024
    - 26.7K bytes
    - Viewed (0)
  10. tensorflow/c/eager/dlpack.cc

      std::string device_type = parsed_name.type;
      int device_id = 0;
      if (parsed_name.has_id) {
        device_id = parsed_name.id;
      }
    
      ctx.device_id = device_id;
      if (device_type == "CPU") {
        ctx.device_type = DLDeviceType::kDLCPU;
      } else if (device_type == "GPU") {
    #if TENSORFLOW_USE_ROCM
        ctx.device_type = DLDeviceType::kDLROCM;
    #else
        ctx.device_type = DLDeviceType::kDLCUDA;
    #endif
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 12.9K bytes
    - Viewed (0)
Back to top