- Sort Score
- Result 10 results
- Languages All
Results 91 - 100 of 216 for cpui (0.03 sec)
-
.github/workflows/arm-ci-extended-cpp.yml
CI_DOCKER_BUILD_EXTRA_PARAMS="--build-arg py_major_minor_version=${{ matrix.pyver }} --build-arg is_nightly=${is_nightly} --build-arg tf_project_name=${tf_project_name}" \
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Fri Nov 01 08:40:10 UTC 2024 - 2.5K bytes - Viewed (0) -
docs/pt/docs/deployment/docker.md
O **número de processos** nesta imagem é **calculado automaticamente** a partir dos **núcleos de CPU** disponíveis. Isso significa que ele tentará **aproveitar** o máximo de **desempenho** da CPU possível. Você também pode ajustá-lo com as configurações usando **variáveis de ambiente**, etc. Mas isso também significa que, como o número de processos depende da CPU do contêiner em execução, a **quantidade de memória consumida** também dependerá disso.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Aug 12 21:47:53 UTC 2024 - 37.4K bytes - Viewed (0) -
android/guava/src/com/google/common/collect/CompactLinkedHashMap.java
* java.util.LinkedHashMap}. Generally speaking, this class reduces object allocation and memory * consumption at the price of moderately increased constant factors of CPU. Only use this class * when there is a specific reason to prioritize memory over CPU. * * @author Louis Wasserman */ @J2ktIncompatible // no support for access-order mode in LinkedHashMap delegate @GwtIncompatible // not worth using in GWT for now
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Apr 01 16:15:01 UTC 2024 - 8.5K bytes - Viewed (0) -
guava/src/com/google/common/collect/CompactLinkedHashSet.java
* java.util.LinkedHashSet}. Generally speaking, this class reduces object allocation and memory * consumption at the price of moderately increased constant factors of CPU. Only use this class * when there is a specific reason to prioritize memory over CPU. * * @author Louis Wasserman */ @GwtIncompatible // not worth using in GWT for now @ElementTypesAreNonnullByDefault
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Tue Jul 09 00:15:47 UTC 2024 - 9.7K bytes - Viewed (0) -
.github/workflows/arm-cd.yml
CI_DOCKER_BUILD_EXTRA_PARAMS="--build-arg py_major_minor_version=${{ matrix.pyver }} --build-arg is_nightly=${is_nightly} --build-arg tf_project_name=${tf_project_name}" \ ./tensorflow/tools/ci_build/ci_build.sh cpu.arm64 bash tensorflow/tools/ci_build/rel/ubuntu/cpu_arm64_test_build.sh - name: Upload pip wheel to PyPI
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Fri Nov 01 08:40:10 UTC 2024 - 3K bytes - Viewed (0) -
cmd/utils.go
if n := runtime.NumGoroutine(); n > 10000 && !globalIsCICD { return nil, fmt.Errorf("unable to perform CPU IO profile with %d goroutines", n) } dirPath, err := os.MkdirTemp("", "profile") if err != nil { return nil, err } fn := filepath.Join(dirPath, "cpuio.out") f, err := Create(fn) if err != nil { return nil, err } stop := fgprof.Start(f, fgprof.FormatPprof)
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Tue Aug 13 22:22:04 UTC 2024 - 31.9K bytes - Viewed (0) -
compat/maven-embedder/src/test/java/org/apache/maven/cli/MavenCliTest.java
assertThrows(IllegalArgumentException.class, () -> cli.calculateDegreeOfConcurrency("XXXC")); int cpus = Runtime.getRuntime().availableProcessors(); assertEquals((int) (cpus * 2.2), cli.calculateDegreeOfConcurrency("2.2C")); assertEquals(1, cli.calculateDegreeOfConcurrency("0.0001C"));
Registered: Sun Nov 03 03:35:11 UTC 2024 - Last Modified: Fri Oct 25 12:31:46 UTC 2024 - 30.3K bytes - Viewed (0) -
tensorflow/c/eager/c_api_experimental_test.cc
ctx, name, TF_FLOAT, dims, 2, data, size, &Deleter, copy, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* on_host = TFE_TensorHandleCopyToDevice(copy_aliased, ctx, "CPU:0", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* resolved = TFE_TensorHandleResolve(on_host, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Aug 03 03:14:26 UTC 2023 - 31.5K bytes - Viewed (0) -
docs/ko/docs/async.md
이 시나리오에서, (당신을 포함한) 각각의 청소부들은 프로세서가 될 것이고, 각자의 역할을 수행합니다. 실행 시간의 대부분이 대기가 아닌 실제 작업에 소요되고, 컴퓨터에서 작업은 <abbr title="Central Processing Unit">CPU</abbr>에서 이루어지므로, 이러한 문제를 "CPU에 묶였"다고 합니다. --- CPU에 묶인 연산에 관한 흔한 예시는 복잡한 수학 처리를 필요로 하는 경우입니다. 예를 들어: * **오디오** 또는 **이미지** 처리. * **컴퓨터 비전**: 하나의 이미지는 수백개의 픽셀로 구성되어있고, 각 픽셀은 3개의 값 / 색을 갖고 있으며, 일반적으로 해당 픽셀들에 대해 동시에 무언가를 계산해야하는 처리.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 26.7K bytes - Viewed (0) -
tensorflow/c/eager/dlpack.cc
std::string device_type = parsed_name.type; int device_id = 0; if (parsed_name.has_id) { device_id = parsed_name.id; } ctx.device_id = device_id; if (device_type == "CPU") { ctx.device_type = DLDeviceType::kDLCPU; } else if (device_type == "GPU") { #if TENSORFLOW_USE_ROCM ctx.device_type = DLDeviceType::kDLROCM; #else ctx.device_type = DLDeviceType::kDLCUDA; #endif
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 12.9K bytes - Viewed (0)