- Sort Score
- Result 10 results
- Languages All
Results 41 - 50 of 163 for CPU (0.75 sec)
-
.github/workflows/arm-ci-extended-cpp.yml
CI_DOCKER_BUILD_EXTRA_PARAMS="--build-arg py_major_minor_version=${{ matrix.pyver }} --build-arg is_nightly=${is_nightly} --build-arg tf_project_name=${tf_project_name}" \Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Mon Dec 01 09:57:00 UTC 2025 - 2.5K bytes - Viewed (0) -
android/guava/src/com/google/common/collect/CompactLinkedHashMap.java
* java.util.LinkedHashMap}. Generally speaking, this class reduces object allocation and memory * consumption at the price of moderately increased constant factors of CPU. Only use this class * when there is a specific reason to prioritize memory over CPU. * * @author Louis Wasserman */ @J2ktIncompatible // no support for access-order mode in LinkedHashMap delegate @GwtIncompatible // not worth using in GWT for now
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Wed Aug 06 14:59:07 UTC 2025 - 8.4K bytes - Viewed (0) -
docs/de/docs/async.md
--- Typische Beispiele für CPU-lastige Vorgänge sind Dinge, die komplexe mathematische Berechnungen erfordern. Zum Beispiel: * **Audio-** oder **Bildbearbeitung**.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Sep 20 15:10:09 UTC 2025 - 27.9K bytes - Viewed (0) -
guava/src/com/google/common/collect/CompactLinkedHashMap.java
* java.util.LinkedHashMap}. Generally speaking, this class reduces object allocation and memory * consumption at the price of moderately increased constant factors of CPU. Only use this class * when there is a specific reason to prioritize memory over CPU. * * @author Louis Wasserman */ @J2ktIncompatible // no support for access-order mode in LinkedHashMap delegate @GwtIncompatible // not worth using in GWT for now
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Sat Aug 09 01:14:59 UTC 2025 - 10.2K bytes - Viewed (0) -
.github/workflows/arm-cd.yml
CI_DOCKER_BUILD_EXTRA_PARAMS="--build-arg py_major_minor_version=${{ matrix.pyver }} --build-arg is_nightly=${is_nightly} --build-arg tf_project_name=${tf_project_name}" \ ./tensorflow/tools/ci_build/ci_build.sh cpu.arm64 bash tensorflow/tools/ci_build/rel/ubuntu/cpu_arm64_test_build.sh - name: Upload pip wheel to PyPIRegistered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Mon Dec 01 09:57:00 UTC 2025 - 3K bytes - Viewed (0) -
docs/pt/docs/async.md
--- Exemplos comuns de operações limitadas por CPU são coisas que exigem processamento matemático complexo. Por exemplo: * **Processamento de áudio** ou **imagem**
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Nov 12 16:23:57 UTC 2025 - 25.8K bytes - Viewed (0) -
cmd/callhome.go
// callhome running on a different node. // sleep for some time and try again. duration := max(time.Duration(r.Float64()*float64(globalCallhomeConfig.FrequencyDur())), // Make sure to sleep at least a second to avoid high CPU ticks. time.Second) time.Sleep(duration) } }() } func runCallhome(ctx context.Context, objAPI ObjectLayer) bool { // Make sure only 1 callhome is running on the cluster.
Registered: Sun Dec 28 19:28:13 UTC 2025 - Last Modified: Fri Aug 29 02:39:48 UTC 2025 - 5.3K bytes - Viewed (0) -
schema/naming.go
} return formattedName } var ( // https://github.com/golang/lint/blob/master/lint.go#L770 commonInitialisms = []string{"API", "ASCII", "CPU", "CSS", "DNS", "EOF", "GUID", "HTML", "HTTP", "HTTPS", "ID", "IP", "JSON", "LHS", "QPS", "RAM", "RHS", "RPC", "SLA", "SMTP", "SSH", "TLS", "TTL", "UID", "UI", "UUID", "URI", "URL", "UTF8", "VM", "XML", "XSRF", "XSS"}Registered: Sun Dec 28 09:35:17 UTC 2025 - Last Modified: Wed Jun 12 03:46:59 UTC 2024 - 5.3K bytes - Viewed (0) -
docs/en/docs/async.md
And as most of the execution time is taken by actual work (instead of waiting), and the work in a computer is done by a <abbr title="Central Processing Unit">CPU</abbr>, they call these problems "CPU bound". --- Common examples of CPU bound operations are things that require complex math processing. For example: * **Audio** or **image processing**.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 24K bytes - Viewed (0) -
docs/zh/docs/deployment/docker.md
/// ### 官方 Docker 镜像上的进程数 此镜像上的**进程数**是根据可用的 CPU **核心**自动计算的。 这意味着它将尝试尽可能多地**榨取**CPU 的**性能**。 你还可以使用 **环境变量** 等配置来调整它。 但这也意味着,由于进程数量取决于容器运行的 CPU,因此**消耗的内存量**也将取决于该数量。 因此,如果你的应用程序消耗大量内存(例如机器学习模型),并且你的服务器有很多 CPU 核心**但内存很少**,那么你的容器最终可能会尝试使用比实际情况更多的内存 可用,并且性能会下降很多(甚至崩溃)。 🚨 ### 创建一个`Dockerfile` 以下是如何根据此镜像创建`Dockerfile`:
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Mon Aug 12 21:47:53 UTC 2024 - 31.2K bytes - Viewed (0)