Search Options

Results per page
Sort
Preferred Languages
Advance

Results 11 - 20 of 44 for GPU (0.39 sec)

  1. RELEASE.md

            `XNNPACK` delegate automatically when the model has a `fp32` operation.
    *   GPU
        *   Allow GPU acceleration starting with internal graph nodes
        *   Experimental support for quantized models with the Android GPU delegate
        *   Add GPU delegate whitelist.
        *   Rename GPU whitelist -> compatibility (list).
        *   Improve GPU compatibility list entries from crash reports.
    *   NNAPI
        *   Set default value for
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Tue Oct 28 22:27:41 UTC 2025
    - 740.4K bytes
    - Viewed (3)
  2. SECURITY.md

    ### Hardware attacks
    
    Physical GPUs or TPUs can also be the target of attacks. [Published
    research](https://scholar.google.com/scholar?q=gpu+side+channel) shows that it
    might be possible to use side channel attacks on the GPU to leak data from other
    running models or processes in the same system. GPUs can also have
    implementation bugs that might allow attackers to leave malicious code running
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Wed Oct 16 16:10:43 UTC 2024
    - 9.6K bytes
    - Viewed (0)
  3. tensorflow/c/c_api_experimental.cc

      // threadpool of GPU event mgr, as that can trigger more callbacks to be
      // scheduled on that same threadpool, causing a deadlock in cases where the
      // caller of event_mgr->ThenExecute() blocks on the completion of the callback
      // (as in the case of ConstOp kernel creation on GPU, which involves copying a
      // CPU tensor to GPU).
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Sat Oct 04 05:55:32 UTC 2025
    - 29.4K bytes
    - Viewed (0)
  4. ci/official/README.md

    You may invoke a CI script of your choice by following these instructions:
    
    ```bash
    cd tensorflow-git-dir
    
    # Here is a single-line example of running a script on Linux to build the
    # GPU version of TensorFlow for Python 3.12, using the public TF bazel cache and
    # a local build cache:
    TFCI=py312,linux_x86_cuda,public_cache,disk_cache ci/official/wheel.sh
    
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Thu Feb 01 03:21:19 UTC 2024
    - 8K bytes
    - Viewed (0)
  5. ci/official/wheel.sh

    # limitations under the License.
    # ==============================================================================
    source "${BASH_SOURCE%/*}/utilities/setup.sh"
    
    # Record GPU count and CUDA version status
    if [[ "$TFCI_NVIDIA_SMI_ENABLE" == 1 ]]; then
      tfrun nvidia-smi
    fi
    
    # Update the version numbers for Nightly only
    if [[ "$TFCI_NIGHTLY_UPDATE_VERSION_ENABLE" == 1 ]]; then
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Mon Mar 03 17:29:53 UTC 2025
    - 3.8K bytes
    - Viewed (0)
  6. ci/official/utilities/rename_and_verify_wheels.sh

      if [[ "$TFCI_PYTHON_VERSION" == "3.13" ]]; then
        "$python" -m pip install numpy==1.26.4
      else
        "$python" -m pip install numpy==1.26.0
      fi
    fi
    if [[ "$TFCI_BAZEL_COMMON_ARGS" =~ gpu|cuda ]]; then
      echo "Checking to make sure tensorflow[and-cuda] is installable..."
      "$python" -m pip install "$(echo *.whl)[and-cuda]" $TFCI_PYTHON_VERIFY_PIP_INSTALL_ARGS
    else
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Mon Sep 22 21:39:32 UTC 2025
    - 4.4K bytes
    - Viewed (0)
  7. .github/workflows/build.yml

            with:
              api-level: ${{ matrix.api-level }}
              arch: ${{ matrix.api-level == '34' && 'x86_64' || 'x86' }}
              force-avd-creation: false
              emulator-options: -no-window -gpu swiftshader_indirect -noaudio -no-boot-anim -camera-back none
              disable-animations: false
              script: echo "Generated AVD snapshot for caching."
    
          - name: Run Tests
    Registered: Fri Dec 26 11:42:13 UTC 2025
    - Last Modified: Fri Dec 12 04:49:37 UTC 2025
    - 18.6K bytes
    - Viewed (0)
  8. docs/ru/docs/advanced/events.md

    А затем сразу после `yield` мы выгружаем модель. Этот код будет выполнен после того, как приложение закончит обрабатывать запросы, непосредственно перед shutdown. Это может, например, освободить ресурсы, такие как память или GPU.
    
    /// tip | Совет
    
    `shutdown` произойдёт, когда вы останавливаете приложение.
    
    Возможно, вам нужно запустить новую версию, или вы просто устали от него. 🤷
    
    ///
    
    ### Функция lifespan { #lifespan-function }
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 12.7K bytes
    - Viewed (0)
  9. docs/en/docs/advanced/events.md

    And then, right after the `yield`, we unload the model. This code will be executed **after** the application **finishes handling requests**, right before the *shutdown*. This could, for example, release resources like memory or a GPU.
    
    /// tip
    
    The `shutdown` would happen when you are **stopping** the application.
    
    Maybe you need to start a new version, or you just got tired of running it. 🤷
    
    ///
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 7.9K bytes
    - Viewed (0)
  10. docs/pt/docs/advanced/events.md

    E então, logo após o `yield`, descarregamos o modelo. Esse código será executado **depois** de a aplicação **terminar de lidar com as requisições**, pouco antes do *encerramento*. Isso poderia, por exemplo, liberar recursos como memória ou uma GPU.
    
    /// tip | Dica
    
    O `shutdown` aconteceria quando você estivesse **encerrando** a aplicação.
    
    Talvez você precise iniciar uma nova versão, ou apenas cansou de executá-la. 🤷
    
    ///
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 8.8K bytes
    - Viewed (0)
Back to top