- Sort Score
- Result 10 results
- Languages All
Results 51 - 60 of 170 for CPU (1.88 sec)
-
tensorflow/c/eager/c_api_experimental_test.cc
ctx, name, TF_FLOAT, dims, 2, data, size, &Deleter, copy, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* on_host = TFE_TensorHandleCopyToDevice(copy_aliased, ctx, "CPU:0", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* resolved = TFE_TensorHandleResolve(on_host, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Aug 03 03:14:26 UTC 2023 - 31.5K bytes - Viewed (0) -
tensorflow/c/eager/dlpack.cc
std::string device_type = parsed_name.type; int device_id = 0; if (parsed_name.has_id) { device_id = parsed_name.id; } ctx.device_id = device_id; if (device_type == "CPU") { ctx.device_type = DLDeviceType::kDLCPU; } else if (device_type == "GPU") { #if TENSORFLOW_USE_ROCM ctx.device_type = DLDeviceType::kDLROCM; #else ctx.device_type = DLDeviceType::kDLCUDA; #endif
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 12.9K bytes - Viewed (0) -
cmd/callhome.go
// sleep for some time and try again. duration := time.Duration(r.Float64() * float64(globalCallhomeConfig.FrequencyDur())) if duration < time.Second { // Make sure to sleep at least a second to avoid high CPU ticks. duration = time.Second } time.Sleep(duration) } }() } func runCallhome(ctx context.Context, objAPI ObjectLayer) bool { // Make sure only 1 callhome is running on the cluster.
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Fri May 17 16:53:34 UTC 2024 - 5.3K bytes - Viewed (0) -
guava/src/com/google/common/collect/CompactLinkedHashMap.java
* java.util.LinkedHashMap}. Generally speaking, this class reduces object allocation and memory * consumption at the price of moderately increased constant factors of CPU. Only use this class * when there is a specific reason to prioritize memory over CPU. * * @author Louis Wasserman */ @J2ktIncompatible // no support for access-order mode in LinkedHashMap delegate @GwtIncompatible // not worth using in GWT for now
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Apr 01 16:15:01 UTC 2024 - 10.2K bytes - Viewed (0) -
schema/naming.go
} return formattedName } var ( // https://github.com/golang/lint/blob/master/lint.go#L770 commonInitialisms = []string{"API", "ASCII", "CPU", "CSS", "DNS", "EOF", "GUID", "HTML", "HTTP", "HTTPS", "ID", "IP", "JSON", "LHS", "QPS", "RAM", "RHS", "RPC", "SLA", "SMTP", "SSH", "TLS", "TTL", "UID", "UI", "UUID", "URI", "URL", "UTF8", "VM", "XML", "XSRF", "XSS"}
Registered: Sun Nov 03 09:35:10 UTC 2024 - Last Modified: Wed Jun 12 03:46:59 UTC 2024 - 5.3K bytes - Viewed (0) -
manifests/addons/dashboards/pilot-dashboard.gen.json
"type": "timeseries" }, { "datasource": { "type": "datasource", "uid": "-- Mixed --" }, "description": "CPU usage of each running instance", "fieldConfig": { "defaults": { "custom": { "fillOpacity": 10, "gradientMode": "hue",
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Fri Jul 26 23:54:32 UTC 2024 - 24.7K bytes - Viewed (0) -
docs/de/docs/async.md
--- Typische Beispiele für CPU-lastige Vorgänge sind Dinge, die komplexe mathematische Berechnungen erfordern. Zum Beispiel: * **Audio-** oder **Bildbearbeitung**.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 26.6K bytes - Viewed (0) -
docs/de/docs/deployment/server-workers.md
Wenn Sie Anwendungen bereitstellen, möchten Sie wahrscheinlich eine gewisse **Replikation von Prozessen**, um **mehrere CPU-Kerne** zu nutzen und mehr Requests bearbeiten zu können. Wie Sie im vorherigen Kapitel über [Deployment-Konzepte](concepts.md){.internal-link target=_blank} gesehen haben, gibt es mehrere Strategien, die Sie anwenden können.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 10.1K bytes - Viewed (0) -
docs/zh/docs/deployment/docker.md
/// ### 官方 Docker 镜像上的进程数 此镜像上的**进程数**是根据可用的 CPU **核心**自动计算的。 这意味着它将尝试尽可能多地**榨取**CPU 的**性能**。 你还可以使用 **环境变量** 等配置来调整它。 但这也意味着,由于进程数量取决于容器运行的 CPU,因此**消耗的内存量**也将取决于该数量。 因此,如果你的应用程序消耗大量内存(例如机器学习模型),并且你的服务器有很多 CPU 核心**但内存很少**,那么你的容器最终可能会尝试使用比实际情况更多的内存 可用,并且性能会下降很多(甚至崩溃)。 🚨 ### 创建一个`Dockerfile` 以下是如何根据此镜像创建`Dockerfile`:
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Aug 12 21:47:53 UTC 2024 - 31.2K bytes - Viewed (0) -
docs/es/docs/async.md
--- Ejemplos típicos de operaciones dependientes de CPU son cosas que requieren un procesamiento matemático complejo. Por ejemplo: * **Audio** o **procesamiento de imágenes**.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Aug 19 18:15:21 UTC 2024 - 24.9K bytes - Viewed (0)