- Sort Score
- Result 10 results
- Languages All
Results 11 - 20 of 631 for Learning (0.03 sec)
-
docs/en/docs/_llm-test.md
* <abbr title="A group of machines that are configured to be connected and work together in some way.">cluster</abbr> * <abbr title="A method of machine learning that uses artificial neural networks with numerous hidden layers between input and output layers, thereby developing a comprehensive internal structure">Deep Learning</abbr> ### The abbr gives a full phrase and an explanation { #the-abbr-gives-a-full-phrase-and-an-explanation }
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Thu Dec 11 14:48:47 UTC 2025 - 11.4K bytes - Viewed (0) -
docs/uk/docs/tutorial/path-params.md
/// /// tip | Порада Якщо вам цікаво, "AlexNet", "ResNet" та "LeNet" — це просто назви ML моделей <abbr title="Технічно, архітектури Deep Learning моделей">Machine Learning</abbr>. /// ### Оголосіть *параметр шляху* Потім створіть *параметр шляху* з анотацією типу, використовуючи створений вами клас enum (`ModelName`):
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 10:29:01 UTC 2025 - 14.1K bytes - Viewed (0) -
docs/en/docs/async.md
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 24K bytes - Viewed (0) -
docs/es/docs/advanced/events.md
## Caso de Uso { #use-case } Empecemos con un ejemplo de **caso de uso** y luego veamos cómo resolverlo con esto. Imaginemos que tienes algunos **modelos de machine learning** que quieres usar para manejar requests. 🤖Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 8.5K bytes - Viewed (0) -
docs/de/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *} /// tip | Tipp Falls Sie sich fragen, was „AlexNet“, „ResNet“ und „LeNet“ ist, das sind Namen von <abbr title="Genau genommen, Deep-Learning-Modellarchitekturen">Modellen</abbr> für maschinelles Lernen. /// ### Einen *Pfad-Parameter* deklarieren { #declare-a-path-parameter }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 10.5K bytes - Viewed (0) -
docs/fr/docs/async.md
* L'apprentissage automatique (ou **Machine Learning**) : cela nécessite de nombreuses multiplications de matrices et vecteurs. Imaginez une énorme feuille de calcul remplie de nombres que vous multiplierez entre eux tous au même moment.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 25.4K bytes - Viewed (0) -
docs/tr/docs/project-generation.md
... müsaitliğime ve diğer faktörlere bağlı olarak daha sonra gelebilir. 😅 🎉 ## Machine Learning modelleri, spaCy ve FastAPI GitHub: <a href="https://github.com/microsoft/cookiecutter-spacy-fastapi" class="external-link" target="_blank">https://github.com/microsoft/cookiecutter-spacy-fastapi</a> ### Machine Learning modelleri, spaCy ve FastAPI - Features * **spaCy** NER model entegrasyonu.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Mon Jul 29 23:35:07 UTC 2024 - 6K bytes - Viewed (0) -
docs/es/docs/_llm-test.md
* <abbr title="Un método de machine learning que usa redes neuronales artificiales con numerosas capas ocultas entre las capas de entrada y salida, desarrollando así una estructura interna completa">Deep Learning</abbr> ### El abbr da una frase completa y una explicación { #the-abbr-gives-a-full-phrase-and-an-explanation }
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Dec 16 16:16:35 UTC 2025 - 12.6K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/score/LtrQueryRescorer.java
import org.codelibs.fess.util.ComponentUtil; import org.opensearch.search.rescore.QueryRescorerBuilder; import org.opensearch.search.rescore.RescorerBuilder; /** * Learning to Rank query rescorer implementation. */ public class LtrQueryRescorer implements QueryRescorer { /** * Default constructor. */ public LtrQueryRescorer() { // Default constructorRegistered: Sat Dec 20 09:19:18 UTC 2025 - Last Modified: Thu Jul 17 08:28:31 UTC 2025 - 1.7K bytes - Viewed (0) -
tests/test_tutorial/test_path_params/test_tutorial005.py
client = TestClient(app) def test_get_enums_alexnet(): response = client.get("/models/alexnet") assert response.status_code == 200 assert response.json() == {"model_name": "alexnet", "message": "Deep Learning FTW!"} def test_get_enums_lenet(): response = client.get("/models/lenet") assert response.status_code == 200 assert response.json() == {"model_name": "lenet", "message": "LeCNN all the images"}
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 27 18:19:10 UTC 2025 - 4.1K bytes - Viewed (0)