- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 10 for populationVariance (0.26 sec)
-
android/guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java
twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance()); assertDiagonalLinearTransformation( manyValuesAccumulator.leastSquaresFit(), manyValuesAccumulator.xStats().mean(), manyValuesAccumulator.yStats().mean(), manyValuesAccumulator.xStats().populationVariance(),
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Thu Dec 11 20:45:32 UTC 2025 - 23.4K bytes - Viewed (0) -
guava/src/com/google/common/math/PairedStatsAccumulator.java
* product-moment correlation coefficient</a> of the values. The count must greater than one, and * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Mon Sep 08 18:35:13 UTC 2025 - 10.4K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/StatsAccumulatorTest.java
assertThrows(IllegalStateException.class, () -> emptyAccumulator.populationVariance()); assertThrows( IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyIterable.populationVariance()); assertThrows( IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyStats.populationVariance()); assertThat(oneValueAccumulator.populationVariance()).isEqualTo(0.0);
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Thu Dec 11 20:45:32 UTC 2025 - 36.9K bytes - Viewed (0) -
guava/src/com/google/common/math/PairedStats.java
* product-moment correlation coefficient</a> of the values. The count must greater than one, and * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Tue Jul 08 18:32:10 UTC 2025 - 12.6K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java
twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance()); assertDiagonalLinearTransformation( manyValuesAccumulator.leastSquaresFit(), manyValuesAccumulator.xStats().mean(), manyValuesAccumulator.yStats().mean(), manyValuesAccumulator.xStats().populationVariance(),
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Thu Dec 11 20:45:32 UTC 2025 - 23.4K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/StatsTesting.java
assertThat(actualStats.populationVariance()).isEqualTo(0.0); assertThat(actualStats.min()).isWithin(ALLOWED_ERROR).of(expectedStats.min()); assertThat(actualStats.max()).isWithin(ALLOWED_ERROR).of(expectedStats.max()); } else { assertThat(actualStats.mean()).isWithin(ALLOWED_ERROR).of(expectedStats.mean()); assertThat(actualStats.populationVariance()) .isWithin(ALLOWED_ERROR)
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 23.8K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/PairedStatsTest.java
TWO_VALUES_PAIRED_STATS.leastSquaresFit(), TWO_VALUES_PAIRED_STATS.xStats().mean(), TWO_VALUES_PAIRED_STATS.yStats().mean(), TWO_VALUES_PAIRED_STATS.xStats().populationVariance(), TWO_VALUES_PAIRED_STATS.populationCovariance()); // For datasets of many double values, we test many combinations of finite and non-finite // x-values: for (ManyValues values : ALL_MANY_VALUES) {
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Thu Dec 11 20:45:32 UTC 2025 - 14K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/PairedStatsTest.java
TWO_VALUES_PAIRED_STATS.leastSquaresFit(), TWO_VALUES_PAIRED_STATS.xStats().mean(), TWO_VALUES_PAIRED_STATS.yStats().mean(), TWO_VALUES_PAIRED_STATS.xStats().populationVariance(), TWO_VALUES_PAIRED_STATS.populationCovariance()); // For datasets of many double values, we test many combinations of finite and non-finite // x-values: for (ManyValues values : ALL_MANY_VALUES) {
Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Thu Dec 11 20:45:32 UTC 2025 - 14K bytes - Viewed (0) -
android/guava/src/com/google/common/math/StatsAccumulator.java
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. * * @throws IllegalStateException if the dataset is empty */ public final double populationVariance() { checkState(count != 0); if (isNaN(sumOfSquaresOfDeltas)) { return NaN; } if (count == 1) { return 0.0; }Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Mon Apr 14 16:36:11 UTC 2025 - 15.8K bytes - Viewed (0) -
guava/src/com/google/common/math/Stats.java
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. * * @throws IllegalStateException if the dataset is empty */ public double populationVariance() { checkState(count > 0); if (isNaN(sumOfSquaresOfDeltas)) { return NaN; } if (count == 1) { return 0.0; }Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Tue Jul 08 18:32:10 UTC 2025 - 24.8K bytes - Viewed (0)