Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 10 for populationVariance (0.26 sec)

  1. android/guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java

            twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance());
        assertDiagonalLinearTransformation(
            manyValuesAccumulator.leastSquaresFit(),
            manyValuesAccumulator.xStats().mean(),
            manyValuesAccumulator.yStats().mean(),
            manyValuesAccumulator.xStats().populationVariance(),
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Thu Dec 11 20:45:32 UTC 2025
    - 23.4K bytes
    - Viewed (0)
  2. guava/src/com/google/common/math/PairedStatsAccumulator.java

       * product-moment correlation coefficient</a> of the values. The count must greater than one, and
       * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
       * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
       * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
       * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Mon Sep 08 18:35:13 UTC 2025
    - 10.4K bytes
    - Viewed (0)
  3. guava-tests/test/com/google/common/math/StatsAccumulatorTest.java

        assertThrows(IllegalStateException.class, () -> emptyAccumulator.populationVariance());
        assertThrows(
            IllegalStateException.class,
            () -> emptyAccumulatorByAddAllEmptyIterable.populationVariance());
        assertThrows(
            IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyStats.populationVariance());
        assertThat(oneValueAccumulator.populationVariance()).isEqualTo(0.0);
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Thu Dec 11 20:45:32 UTC 2025
    - 36.9K bytes
    - Viewed (0)
  4. guava/src/com/google/common/math/PairedStats.java

       * product-moment correlation coefficient</a> of the values. The count must greater than one, and
       * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
       * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
       * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
       * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Tue Jul 08 18:32:10 UTC 2025
    - 12.6K bytes
    - Viewed (0)
  5. guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java

            twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance());
        assertDiagonalLinearTransformation(
            manyValuesAccumulator.leastSquaresFit(),
            manyValuesAccumulator.xStats().mean(),
            manyValuesAccumulator.yStats().mean(),
            manyValuesAccumulator.xStats().populationVariance(),
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Thu Dec 11 20:45:32 UTC 2025
    - 23.4K bytes
    - Viewed (0)
  6. android/guava-tests/test/com/google/common/math/StatsTesting.java

          assertThat(actualStats.populationVariance()).isEqualTo(0.0);
          assertThat(actualStats.min()).isWithin(ALLOWED_ERROR).of(expectedStats.min());
          assertThat(actualStats.max()).isWithin(ALLOWED_ERROR).of(expectedStats.max());
        } else {
          assertThat(actualStats.mean()).isWithin(ALLOWED_ERROR).of(expectedStats.mean());
          assertThat(actualStats.populationVariance())
              .isWithin(ALLOWED_ERROR)
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Thu Dec 19 18:03:30 UTC 2024
    - 23.8K bytes
    - Viewed (0)
  7. android/guava-tests/test/com/google/common/math/PairedStatsTest.java

            TWO_VALUES_PAIRED_STATS.leastSquaresFit(),
            TWO_VALUES_PAIRED_STATS.xStats().mean(),
            TWO_VALUES_PAIRED_STATS.yStats().mean(),
            TWO_VALUES_PAIRED_STATS.xStats().populationVariance(),
            TWO_VALUES_PAIRED_STATS.populationCovariance());
        // For datasets of many double values, we test many combinations of finite and non-finite
        // x-values:
        for (ManyValues values : ALL_MANY_VALUES) {
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Thu Dec 11 20:45:32 UTC 2025
    - 14K bytes
    - Viewed (0)
  8. guava-tests/test/com/google/common/math/PairedStatsTest.java

            TWO_VALUES_PAIRED_STATS.leastSquaresFit(),
            TWO_VALUES_PAIRED_STATS.xStats().mean(),
            TWO_VALUES_PAIRED_STATS.yStats().mean(),
            TWO_VALUES_PAIRED_STATS.xStats().populationVariance(),
            TWO_VALUES_PAIRED_STATS.populationCovariance());
        // For datasets of many double values, we test many combinations of finite and non-finite
        // x-values:
        for (ManyValues values : ALL_MANY_VALUES) {
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Thu Dec 11 20:45:32 UTC 2025
    - 14K bytes
    - Viewed (0)
  9. android/guava/src/com/google/common/math/StatsAccumulator.java

       * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
       *
       * @throws IllegalStateException if the dataset is empty
       */
      public final double populationVariance() {
        checkState(count != 0);
        if (isNaN(sumOfSquaresOfDeltas)) {
          return NaN;
        }
        if (count == 1) {
          return 0.0;
        }
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Mon Apr 14 16:36:11 UTC 2025
    - 15.8K bytes
    - Viewed (0)
  10. guava/src/com/google/common/math/Stats.java

       * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
       *
       * @throws IllegalStateException if the dataset is empty
       */
      public double populationVariance() {
        checkState(count > 0);
        if (isNaN(sumOfSquaresOfDeltas)) {
          return NaN;
        }
        if (count == 1) {
          return 0.0;
        }
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Tue Jul 08 18:32:10 UTC 2025
    - 24.8K bytes
    - Viewed (0)
Back to top