- Sort Score
- Result 10 results
- Languages All
Results 1 - 6 of 6 for populationVariance (0.06 sec)
-
android/guava-tests/test/com/google/common/math/StatsAccumulatorTest.java
assertThrows(IllegalStateException.class, () -> emptyAccumulator.populationVariance()); assertThrows( IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyIterable.populationVariance()); assertThrows( IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyStats.populationVariance()); assertThat(oneValueAccumulator.populationVariance()).isEqualTo(0.0);
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 36.9K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java
twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance()); assertDiagonalLinearTransformation( manyValuesAccumulator.leastSquaresFit(), manyValuesAccumulator.xStats().mean(), manyValuesAccumulator.yStats().mean(), manyValuesAccumulator.xStats().populationVariance(),
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 23.4K bytes - Viewed (0) -
guava/src/com/google/common/math/PairedStatsAccumulator.java
* product-moment correlation coefficient</a> of the values. The count must greater than one, and * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Apr 14 16:36:11 UTC 2025 - 10.4K bytes - Viewed (0) -
guava/src/com/google/common/math/PairedStats.java
* product-moment correlation coefficient</a> of the values. The count must greater than one, and * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Tue Jul 08 18:32:10 UTC 2025 - 12.6K bytes - Viewed (0) -
android/guava/src/com/google/common/math/StatsAccumulator.java
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. * * @throws IllegalStateException if the dataset is empty */ public final double populationVariance() { checkState(count != 0); if (isNaN(sumOfSquaresOfDeltas)) { return NaN; } if (count == 1) { return 0.0; }
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Apr 14 16:36:11 UTC 2025 - 15.8K bytes - Viewed (0) -
guava/src/com/google/common/math/Stats.java
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. * * @throws IllegalStateException if the dataset is empty */ public double populationVariance() { checkState(count > 0); if (isNaN(sumOfSquaresOfDeltas)) { return NaN; } if (count == 1) { return 0.0; }
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Tue Jul 08 18:32:10 UTC 2025 - 24.8K bytes - Viewed (0)