- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 12 for populationVariance (0.16 sec)
-
guava-tests/test/com/google/common/math/StatsTest.java
assertThrows(IllegalStateException.class, () -> EMPTY_STATS_VARARGS.populationVariance()); assertThrows(IllegalStateException.class, () -> EMPTY_STATS_ITERABLE.populationVariance()); assertThat(ONE_VALUE_STATS.populationVariance()).isEqualTo(0.0); assertThat(Stats.of(POSITIVE_INFINITY).populationVariance()).isNaN(); assertThat(Stats.of(NEGATIVE_INFINITY).populationVariance()).isNaN(); assertThat(Stats.of(NaN).populationVariance()).isNaN();
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 23 16:45:30 UTC 2024 - 33.3K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/StatsAccumulatorTest.java
assertThrows(IllegalStateException.class, () -> emptyAccumulator.populationVariance()); assertThrows( IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyIterable.populationVariance()); assertThrows( IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyStats.populationVariance()); assertThat(oneValueAccumulator.populationVariance()).isEqualTo(0.0);
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 23 16:45:30 UTC 2024 - 36.8K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/StatsAccumulatorTest.java
assertThrows(IllegalStateException.class, () -> emptyAccumulator.populationVariance()); assertThrows( IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyIterable.populationVariance()); assertThrows( IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyStats.populationVariance()); assertThat(oneValueAccumulator.populationVariance()).isEqualTo(0.0);
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 23 16:45:30 UTC 2024 - 36.8K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java
twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance()); assertDiagonalLinearTransformation( manyValuesAccumulator.leastSquaresFit(), manyValuesAccumulator.xStats().mean(), manyValuesAccumulator.yStats().mean(), manyValuesAccumulator.xStats().populationVariance(),
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Jul 03 21:17:33 UTC 2024 - 23.3K bytes - Viewed (0) -
guava/src/com/google/common/math/PairedStatsAccumulator.java
* product-moment correlation coefficient</a> of the values. The count must greater than one, and * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri May 12 17:02:53 UTC 2023 - 10.3K bytes - Viewed (0) -
guava/src/com/google/common/math/PairedStats.java
* product-moment correlation coefficient</a> of the values. The count must greater than one, and * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri May 12 17:02:53 UTC 2023 - 12.6K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java
twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance()); assertDiagonalLinearTransformation( manyValuesAccumulator.leastSquaresFit(), manyValuesAccumulator.xStats().mean(), manyValuesAccumulator.yStats().mean(), manyValuesAccumulator.xStats().populationVariance(),
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Jul 03 21:17:33 UTC 2024 - 23.3K bytes - Viewed (0) -
android/guava/src/com/google/common/math/PairedStatsAccumulator.java
* product-moment correlation coefficient</a> of the values. The count must greater than one, and * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri May 12 17:02:53 UTC 2023 - 10.3K bytes - Viewed (0) -
android/guava/src/com/google/common/math/PairedStats.java
* product-moment correlation coefficient</a> of the values. The count must greater than one, and * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri May 12 17:02:53 UTC 2023 - 12.6K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/PairedStatsTest.java
TWO_VALUES_PAIRED_STATS.leastSquaresFit(), TWO_VALUES_PAIRED_STATS.xStats().mean(), TWO_VALUES_PAIRED_STATS.yStats().mean(), TWO_VALUES_PAIRED_STATS.xStats().populationVariance(), TWO_VALUES_PAIRED_STATS.populationCovariance()); // For datasets of many double values, we test many combinations of finite and non-finite // x-values: for (ManyValues values : ALL_MANY_VALUES) {
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Jul 03 21:17:33 UTC 2024 - 14K bytes - Viewed (0)