Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 12 for populationVariance (0.16 sec)

  1. guava-tests/test/com/google/common/math/StatsTest.java

        assertThrows(IllegalStateException.class, () -> EMPTY_STATS_VARARGS.populationVariance());
        assertThrows(IllegalStateException.class, () -> EMPTY_STATS_ITERABLE.populationVariance());
        assertThat(ONE_VALUE_STATS.populationVariance()).isEqualTo(0.0);
        assertThat(Stats.of(POSITIVE_INFINITY).populationVariance()).isNaN();
        assertThat(Stats.of(NEGATIVE_INFINITY).populationVariance()).isNaN();
        assertThat(Stats.of(NaN).populationVariance()).isNaN();
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 23 16:45:30 UTC 2024
    - 33.3K bytes
    - Viewed (0)
  2. android/guava-tests/test/com/google/common/math/StatsAccumulatorTest.java

        assertThrows(IllegalStateException.class, () -> emptyAccumulator.populationVariance());
        assertThrows(
            IllegalStateException.class,
            () -> emptyAccumulatorByAddAllEmptyIterable.populationVariance());
        assertThrows(
            IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyStats.populationVariance());
        assertThat(oneValueAccumulator.populationVariance()).isEqualTo(0.0);
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 23 16:45:30 UTC 2024
    - 36.8K bytes
    - Viewed (0)
  3. guava-tests/test/com/google/common/math/StatsAccumulatorTest.java

        assertThrows(IllegalStateException.class, () -> emptyAccumulator.populationVariance());
        assertThrows(
            IllegalStateException.class,
            () -> emptyAccumulatorByAddAllEmptyIterable.populationVariance());
        assertThrows(
            IllegalStateException.class, () -> emptyAccumulatorByAddAllEmptyStats.populationVariance());
        assertThat(oneValueAccumulator.populationVariance()).isEqualTo(0.0);
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 23 16:45:30 UTC 2024
    - 36.8K bytes
    - Viewed (0)
  4. android/guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java

            twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance());
        assertDiagonalLinearTransformation(
            manyValuesAccumulator.leastSquaresFit(),
            manyValuesAccumulator.xStats().mean(),
            manyValuesAccumulator.yStats().mean(),
            manyValuesAccumulator.xStats().populationVariance(),
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Jul 03 21:17:33 UTC 2024
    - 23.3K bytes
    - Viewed (0)
  5. guava/src/com/google/common/math/PairedStatsAccumulator.java

       * product-moment correlation coefficient</a> of the values. The count must greater than one, and
       * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
       * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
       * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
       * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Fri May 12 17:02:53 UTC 2023
    - 10.3K bytes
    - Viewed (0)
  6. guava/src/com/google/common/math/PairedStats.java

       * product-moment correlation coefficient</a> of the values. The count must greater than one, and
       * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
       * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
       * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
       * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Fri May 12 17:02:53 UTC 2023
    - 12.6K bytes
    - Viewed (0)
  7. guava-tests/test/com/google/common/math/PairedStatsAccumulatorTest.java

            twoValuesAccumulatorByAddAllPartitionedPairedStats.populationCovariance());
        assertDiagonalLinearTransformation(
            manyValuesAccumulator.leastSquaresFit(),
            manyValuesAccumulator.xStats().mean(),
            manyValuesAccumulator.yStats().mean(),
            manyValuesAccumulator.xStats().populationVariance(),
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Jul 03 21:17:33 UTC 2024
    - 23.3K bytes
    - Viewed (0)
  8. android/guava/src/com/google/common/math/PairedStatsAccumulator.java

       * product-moment correlation coefficient</a> of the values. The count must greater than one, and
       * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
       * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
       * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
       * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Fri May 12 17:02:53 UTC 2023
    - 10.3K bytes
    - Viewed (0)
  9. android/guava/src/com/google/common/math/PairedStats.java

       * product-moment correlation coefficient</a> of the values. The count must greater than one, and
       * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
       * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
       * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
       * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Fri May 12 17:02:53 UTC 2023
    - 12.6K bytes
    - Viewed (0)
  10. guava-tests/test/com/google/common/math/PairedStatsTest.java

            TWO_VALUES_PAIRED_STATS.leastSquaresFit(),
            TWO_VALUES_PAIRED_STATS.xStats().mean(),
            TWO_VALUES_PAIRED_STATS.yStats().mean(),
            TWO_VALUES_PAIRED_STATS.xStats().populationVariance(),
            TWO_VALUES_PAIRED_STATS.populationCovariance());
        // For datasets of many double values, we test many combinations of finite and non-finite
        // x-values:
        for (ManyValues values : ALL_MANY_VALUES) {
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Jul 03 21:17:33 UTC 2024
    - 14K bytes
    - Viewed (0)
Back to top