- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 448 for Tan (0.25 sec)
-
深度学习500问-Tan-00目录.docx
Tan <******@****.***> 1530081549 +0800
MS Word - Registered: 2021-01-17 15:33 - Last Modified: 2018-06-27 07:00 - 32.3K bytes - Viewed (0) -
src/test/java/com/alibaba/druid/bvt/sql/eval/EvalMethodTanTest.java
public void test_reverse() throws Exception { Assert.assertEquals(Math.tan(1), SQLEvalVisitorUtils.evalExpr(JdbcConstants.MYSQL, "tan(1)")); Assert.assertEquals(Math.tan(1.001), SQLEvalVisitorUtils.evalExpr(JdbcConstants.MYSQL, "tan(1.001)")); Assert.assertEquals(Math.tan(0), SQLEvalVisitorUtils.evalExpr(JdbcConstants.MYSQL, "tan(0)")); } public void test_error() throws Exception {
Java - Registered: 2020-10-26 07:39 - Last Modified: 2013-06-16 16:34 - 1.2K bytes - Viewed (0) -
专业课/高等数学D/三角函数公式汇总.doc
b a b a b a sin cos cos sin ) sin( × - × = - b a b a b a sin sin cos cos ) cos( × - × = + b a b a b a sin sin cos cos ) cos( × + × = - b a b a b a tan tan 1 tan tan ) tan( × - + = + b a b a b a tan tan 1 tan tan ) tan( × + - = - 五、二倍角公式 a a a cos sin 2 2 sin = a a a a a 2 2 2 2 sin 2 1 1 cos 2 sin cos 2 cos - = - = - = … ) ( * a a a 2 tan 1 tan 2 2 tan - = 二倍角的余弦公式 ) ( * 有以下常用变形:(规律:降幂扩角,升幂缩角) a a 2 cos 2 2 cos 1 = + a a 2 sin 2 2 cos 1 = - 2 ) cos (sin 2 sin 1 a a a + = + 2 ) cos (sin 2 sin 1 a a...
MS Word - Registered: 2021-01-17 02:06 - Last Modified: 2018-11-22 14:19 - 200.5K bytes - Viewed (0) -
lib/subutil/src/main/java/com/blankj/subutil/util/PinyinUtils.java
.append(" lin rang chan xun yan lei ba none...
Java - Registered: 2021-01-15 00:33 - Last Modified: 2019-07-10 11:46 - 129.1K bytes - Viewed (0) -
aten/src/ATen/NumericUtils.h
} template <typename T> C10_HOST_DEVICE inline T tan(T x) { static_assert(!std::is_same<T, double>::value, "this template must be used with float or less precise type"); #if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__) // use __tanf fast approximation for peak bandwidth return __tanf(x); #else return ::tan(x); #endif } template <> C10_HOST_DEVICE inline double tan<double>(double x) { return ::tan(x); }
C - Registered: 2021-01-17 05:39 - Last Modified: 2020-11-02 19:49 - 2.7K bytes - Viewed (0) -
core/server/web/api/testmode/jobs/cpu-hog.js
const logging = require('../../../../../shared/logging'); (async () => { let sum = 0; logging.info(`Starting CPU intensive task at ${new Date()}`); for (let i = 0; i < 100000000; i++) { sum += Math.tan(Math.tan(i)); } logging.info(`Calculation result: ${sum}`); logging.info(`Finishing CPU intensive task at ${new Date()}`);
JavaScript - Registered: 2021-01-12 17:59 - Last Modified: 2020-11-23 04:17 - 368 bytes - Viewed (0) -
geodesy/haversine_distance.py
RADIUS = 6378137 # Equation parameters # Equation https://en.wikipedia.org/wiki/Haversine_formula#Formulation flattening = (AXIS_A - AXIS_B) / AXIS_A phi_1 = atan((1 - flattening) * tan(radians(lat1))) phi_2 = atan((1 - flattening) * tan(radians(lat2))) lambda_1 = radians(lon1) lambda_2 = radians(lon2) # Equation sin_sq_phi = sin((phi_2 - phi_1) / 2) sin_sq_lambda = sin((lambda_2 - lambda_1) / 2)
Python - Registered: 2021-01-14 19:18 - Last Modified: 2020-02-16 09:55 - 2.3K bytes - Viewed (0) -
专业课/高等数学D/高数课件/Chap_4_2_不定积分的计算.pdf
对: 对数函数 幂: 幂函数 指: 指数函数 三: 三角函数 46/58 例6. 求 Peking University Press 解: 令 ,cosln xu x v 2cos 1 , 则 ,tan xu xv tan 原式 = xx coslntan xx dtan 2 xx coslntan xx d)1(sec 2 xx coslntan Cxx tan 机动 目录 上页 下页 返回 结束 47/58 例7. 求 Peking University Press 解: 令 ,tx 则 ,2tx ttx d2d 原式 tet t d2 tet(2 Cxe x )1(2
PDF - Registered: 2021-01-17 02:06 - Last Modified: 2018-11-22 14:19 - 879.4K bytes - Viewed (0) -
专业课/高等数学D/历年考题/2010年高数期末试题(含答案).pdf
3. 2 2 1 1 dx x x = 2 2 2 2 2 sec cos sin 1 1 tan sec sin sin sin tdt t d t xdt C C t t t t t x 4. 3 2sin 1 cos x x dx x 2 2 3 4sin cos 32 2 sec 2 tan 2 2 22cos 2 3 (tan ) 2 tan 3 tan 3 tan 2 tan 2 2 2 2 2 sin 23 tan 2 3 tan ln cos 2 2 2 2cos 2 x xx x xdx x dx dxx x x x x xxd dx x dx dx x
PDF - Registered: 2021-01-17 02:06 - Last Modified: 2018-11-22 14:19 - 380.7K bytes - Viewed (0) -
base/special/trig.jl
# 3 2 2 2 2 # r = y *(T2+y *(T3+y *(...+y *(T12+y *T13)))) # then # 3 2 # tan(y+z) = y + (T1*y + (y *(r+z)+z)) # # 4. For y in [0.67434,pi/4], let z = pi/4 - y, then # tan(y) = tan(pi/4-z) = (1-tan(z))/(1+tan(z)) # = 1 - 2*(tan(z) - (tan(z)^2)/(1+tan(z)))
Others - Registered: 2021-01-18 02:21 - Last Modified: 2020-12-07 13:15 - 40.3K bytes - Viewed (0)