- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 41 for dividend (0.06 sec)
-
android/guava/src/com/google/common/primitives/UnsignedLongs.java
public static long divide(long dividend, long divisor) { if (divisor < 0) { // i.e., divisor >= 2^63: if (compare(dividend, divisor) < 0) { return 0; // dividend < divisor } else { return 1; // dividend >= divisor } } // Optimization - use signed division if dividend < 2^63 if (dividend >= 0) { return dividend / divisor; } /*
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Mon Aug 12 21:04:48 UTC 2024 - 17.6K bytes - Viewed (0) -
android/guava/src/com/google/common/primitives/UnsignedInts.java
public static int divide(int dividend, int divisor) { return (int) (toLong(dividend) / toLong(divisor)); } /** * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 32-bit * quantities. * * <p><b>Java 8+ users:</b> use {@link Integer#remainderUnsigned(int, int)} instead. * * @param dividend the dividend (numerator) * @param divisor the divisor (denominator)
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 30 21:17:54 UTC 2024 - 13.7K bytes - Viewed (0) -
guava/src/com/google/common/primitives/UnsignedInts.java
public static int divide(int dividend, int divisor) { return (int) (toLong(dividend) / toLong(divisor)); } /** * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 32-bit * quantities. * * <p><b>Java 8+ users:</b> use {@link Integer#remainderUnsigned(int, int)} instead. * * @param dividend the dividend (numerator) * @param divisor the divisor (denominator)
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 30 21:17:54 UTC 2024 - 13.7K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/primitives/UnsignedIntsTest.java
Random r = new Random(0L); for (int i = 0; i < 1000000; i++) { int dividend = r.nextInt(); int divisor = r.nextInt(); // Test that the Euclidean property is preserved: assertThat( dividend - (divisor * UnsignedInts.divide(dividend, divisor) + UnsignedInts.remainder(dividend, divisor))) .isEqualTo(0); } }
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Sat Oct 19 02:56:12 UTC 2024 - 12.5K bytes - Viewed (0) -
src/main/webapp/css/admin/bootstrap.min.css.map
$rfs-base-font-size unit\n$rfs-base-font-size-unit: unit($rfs-base-font-size);\n\n@function divide($dividend, $divisor, $precision: 10) {\n $sign: if($dividend > 0 and $divisor > 0 or $dividend < 0 and $divisor < 0, 1, -1);\n $dividend: abs($dividend);\n $divisor: abs($divisor);\n @if $dividend == 0 {\n @return 0;\n }\n @if $divisor == 0 {\n @error \"Cannot divide by 0\";\n }\n $remainder: $dividend;\n $result: 0;\n $factor: 10;\n @while ($remainder > 0 and $precision >= 0) {\n $quotient:...
Registered: Thu Oct 31 13:40:30 UTC 2024 - Last Modified: Sat Oct 26 01:49:09 UTC 2024 - 639.3K bytes - Viewed (0) -
doc/go1.17_spec.html
Registered: Tue Nov 05 11:13:11 UTC 2024 - Last Modified: Thu Oct 10 18:25:45 UTC 2024 - 211.6K bytes - Viewed (0) -
guava/src/com/google/common/math/BigIntegerMath.java
} } /** * Returns the result of dividing {@code p} by {@code q}, rounding using the specified {@code * RoundingMode}. * * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} * is not an integer multiple of {@code b} */ @GwtIncompatible // TODO public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode) {
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 16 17:21:56 UTC 2024 - 18.8K bytes - Viewed (0) -
android/guava/src/com/google/common/math/LongMath.java
a >>= aTwos; // divide out all 2s int bTwos = Long.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 09 16:39:37 UTC 2024 - 45.2K bytes - Viewed (0) -
guava/src/com/google/common/math/LongMath.java
a >>= aTwos; // divide out all 2s int bTwos = Long.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Wed Oct 09 16:39:37 UTC 2024 - 45.2K bytes - Viewed (0) -
doc/go_spec.html
Registered: Tue Nov 05 11:13:11 UTC 2024 - Last Modified: Wed Oct 02 00:58:01 UTC 2024 - 282.5K bytes - Viewed (0)