Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 167 for divide (0.1 sec)

  1. android/guava-tests/test/com/google/common/math/IntMathTest.java

            }
            boolean dividesEvenly = (p % q) == 0;
            try {
              assertEquals(p + "/" + q, p, IntMath.divide(p, q, UNNECESSARY) * q);
              assertTrue(p + "/" + q + " not expected to divide evenly", dividesEvenly);
            } catch (ArithmeticException e) {
              assertFalse(p + "/" + q + " expected to divide evenly", dividesEvenly);
            }
          }
        }
      }
    
      public void testZeroDivIsAlwaysZero() {
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Sat Oct 19 00:26:48 UTC 2024
    - 23.1K bytes
    - Viewed (0)
  2. guava-tests/test/com/google/common/math/LongMathTest.java

              long expected =
                  new BigDecimal(valueOf(p)).divide(new BigDecimal(valueOf(q)), 0, mode).longValue();
              long actual = LongMath.divide(p, q, mode);
              if (expected != actual) {
                failFormat("expected divide(%s, %s, %s) = %s; got %s", p, q, mode, expected, actual);
              }
            }
          }
        }
      }
    
      @GwtIncompatible // TODO
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Fri Oct 18 15:00:32 UTC 2024
    - 30.6K bytes
    - Viewed (0)
  3. guava-tests/test/com/google/common/math/IntMathTest.java

            }
            boolean dividesEvenly = (p % q) == 0;
            try {
              assertEquals(p + "/" + q, p, IntMath.divide(p, q, UNNECESSARY) * q);
              assertTrue(p + "/" + q + " not expected to divide evenly", dividesEvenly);
            } catch (ArithmeticException e) {
              assertFalse(p + "/" + q + " expected to divide evenly", dividesEvenly);
            }
          }
        }
      }
    
      public void testZeroDivIsAlwaysZero() {
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Sat Oct 19 00:26:48 UTC 2024
    - 23.1K bytes
    - Viewed (0)
  4. guava/src/com/google/common/math/BigIntegerMath.java

           */
          sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1);
        }
        BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
        if (sqrt0.equals(sqrt1)) {
          return sqrt0;
        }
        do {
          sqrt0 = sqrt1;
          sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
        } while (sqrt1.compareTo(sqrt0) < 0);
        return sqrt0;
      }
    
      @GwtIncompatible // TODO
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 16 17:21:56 UTC 2024
    - 18.8K bytes
    - Viewed (0)
  5. android/guava/src/com/google/common/primitives/UnsignedLongs.java

      public static long divide(long dividend, long divisor) {
        if (divisor < 0) { // i.e., divisor >= 2^63:
          if (compare(dividend, divisor) < 0) {
            return 0; // dividend < divisor
          } else {
            return 1; // dividend >= divisor
          }
        }
    
        // Optimization - use signed division if dividend < 2^63
        if (dividend >= 0) {
          return dividend / divisor;
        }
    
        /*
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Mon Aug 12 21:04:48 UTC 2024
    - 17.6K bytes
    - Viewed (0)
  6. android/guava-tests/test/com/google/common/primitives/UnsignedIntsTest.java

        Random r = new Random(0L);
        for (int i = 0; i < 1000000; i++) {
          int dividend = r.nextInt();
          int divisor = r.nextInt();
          // Test that the Euclidean property is preserved:
          assertThat(
                  dividend
                      - (divisor * UnsignedInts.divide(dividend, divisor)
                          + UnsignedInts.remainder(dividend, divisor)))
              .isEqualTo(0);
        }
      }
    
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Sat Oct 19 02:56:12 UTC 2024
    - 12.5K bytes
    - Viewed (0)
  7. android/guava-tests/benchmark/com/google/common/math/BigIntegerMathBenchmark.java

            result *= i;
          }
          return BigInteger.valueOf(result);
        }
    
        /*
         * We want each multiplication to have both sides with approximately the same number of digits.
         * Currently, we just divide the range in half.
         */
        int mid = (n1 + n2) >>> 1;
        return oldSlowFactorial(n1, mid).multiply(oldSlowFactorial(mid, n2));
      }
    
      @Benchmark
      int slowFactorial(int reps) {
        int tmp = 0;
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Mon Aug 19 16:21:24 UTC 2024
    - 3.4K bytes
    - Viewed (0)
  8. guava-tests/benchmark/com/google/common/math/BigIntegerMathBenchmark.java

            result *= i;
          }
          return BigInteger.valueOf(result);
        }
    
        /*
         * We want each multiplication to have both sides with approximately the same number of digits.
         * Currently, we just divide the range in half.
         */
        int mid = (n1 + n2) >>> 1;
        return oldSlowFactorial(n1, mid).multiply(oldSlowFactorial(mid, n2));
      }
    
      @Benchmark
      int slowFactorial(int reps) {
        int tmp = 0;
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Mon Aug 19 16:21:24 UTC 2024
    - 3.4K bytes
    - Viewed (0)
  9. android/guava/src/com/google/common/math/LongMath.java

        a >>= aTwos; // divide out all 2s
        int bTwos = Long.numberOfTrailingZeros(b);
        b >>= bTwos; // divide out all 2s
        while (a != b) { // both a, b are odd
          // The key to the binary GCD algorithm is as follows:
          // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
          // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
    
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 09 16:39:37 UTC 2024
    - 45.2K bytes
    - Viewed (0)
  10. guava/src/com/google/common/math/LongMath.java

        a >>= aTwos; // divide out all 2s
        int bTwos = Long.numberOfTrailingZeros(b);
        b >>= bTwos; // divide out all 2s
        while (a != b) { // both a, b are odd
          // The key to the binary GCD algorithm is as follows:
          // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
          // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
    
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 09 16:39:37 UTC 2024
    - 45.2K bytes
    - Viewed (0)
Back to top