- Sort Score
- Result 10 results
- Languages All
Results 1 - 5 of 5 for warmups (4.97 sec)
-
.teamcity/src/main/kotlin/configurations/TestPerformanceTest.kt
listOf( "clean", "performance:${testProject}PerformanceAdHocTest", tests.map { """--tests "$it"""" }.joinToString(" "), """--warmups 2 --runs 2 --checks none""", "-PtestJavaVersion=${os.perfTestJavaVersion.major}", "-PtestJavaVendor=${os.perfTestJavaVendor.name.lowercase()}",
Registered: Wed Sep 10 11:36:15 UTC 2025 - Last Modified: Mon Aug 25 20:21:47 UTC 2025 - 3.3K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/util/concurrent/RateLimiterTest.java
for (int i = 0; i < 8; i++) { limiter.acquire(); // // #1 } stopwatch.sleepMillis(4500); // #2: back to cold state (warmup period + repay last acquire) for (int i = 0; i < 3; i++) { // only three steps, we're somewhere in the warmup period limiter.acquire(); // #3 } limiter.setRate(4.0); // double the rate!
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Aug 11 19:31:30 UTC 2025 - 21.9K bytes - Viewed (0) -
guava-tests/test/com/google/common/util/concurrent/RateLimiterTest.java
for (int i = 0; i < 8; i++) { limiter.acquire(); // // #1 } stopwatch.sleepMillis(4500); // #2: back to cold state (warmup period + repay last acquire) for (int i = 0; i < 3; i++) { // only three steps, we're somewhere in the warmup period limiter.acquire(); // #3 } limiter.setRate(4.0); // double the rate!
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Aug 11 19:31:30 UTC 2025 - 21.9K bytes - Viewed (0) -
.teamcity/src/main/kotlin/configurations/CompileAll.kt
stage: Stage, ) : OsAwareBaseGradleBuildType(os = Os.LINUX, stage = stage, init = { id(buildTypeId(model)) name = "Compile All" description = "Compiles all production/test source code and warms up the build cache" features { publishBuildStatusToGithub(model) } applyDefaults( model, this,
Registered: Wed Sep 10 11:36:15 UTC 2025 - Last Modified: Mon Aug 25 20:21:47 UTC 2025 - 1.4K bytes - Viewed (0) -
RELEASE.md
* Added warmup capabilities to `tf.keras.optimizers.schedules.CosineDecay` learning rate scheduler. You can now specify an initial and target learning rate, and our scheduler will perform a linear interpolation between the two after which it will begin a decay phase....
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Aug 18 20:54:38 UTC 2025 - 740K bytes - Viewed (1)