- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 55 for keywords (0.06 sec)
-
src/test/java/org/codelibs/fess/suggest/util/SuggestUtilTest.java
List<String> keywords = SuggestUtil.getKeywords(query, fields); assertNotNull(keywords); assertEquals(2, keywords.size()); assertTrue(keywords.contains("test")); assertTrue(keywords.contains("query")); // Test with OR operator List<String> orKeywords = SuggestUtil.getKeywords("test OR query", fields); assertNotNull(orKeywords);
Registered: Sat Dec 20 13:04:59 UTC 2025 - Last Modified: Mon Nov 24 03:40:05 UTC 2025 - 26.7K bytes - Viewed (0) -
fess-crawler/src/main/java/org/codelibs/fess/crawler/entity/SitemapNews.java
this.title = title; } /** * Gets the keywords. * @return the keywords */ public String getKeywords() { return keywords; } /** * Sets the keywords. * @param keywords the keywords to set */ public void setKeywords(final String keywords) { this.keywords = keywords; } /** * Gets the stock tickers.Registered: Sat Dec 20 11:21:39 UTC 2025 - Last Modified: Thu Nov 13 13:34:36 UTC 2025 - 4.8K bytes - Viewed (0) -
fess-crawler/src/test/java/org/codelibs/fess/crawler/entity/ExtractDataTest.java
} public void test_putValues() { // Test putValues method ExtractData data = new ExtractData(); String[] keywords = { "java", "crawler", "testing" }; data.putValues("keywords", keywords); String[] retrievedKeywords = data.getValues("keywords"); assertNotNull(retrievedKeywords); assertEquals(3, retrievedKeywords.length); assertEquals("java", retrievedKeywords[0]);Registered: Sat Dec 20 11:21:39 UTC 2025 - Last Modified: Mon Nov 24 03:59:47 UTC 2025 - 9.9K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/suggest/util/SuggestUtil.java
* * @param q the query string to parse and extract keywords from * @param fields the fields to consider when extracting keywords * @return a list of unique keywords extracted from the query string */ public static List<String> getKeywords(final String q, final String[] fields) { final List<String> keywords = new ArrayList<>();Registered: Sat Dec 20 13:04:59 UTC 2025 - Last Modified: Sun Nov 23 11:21:40 UTC 2025 - 17.5K bytes - Viewed (1) -
docs/en/docs/tutorial/extra-models.md
So, we get a Pydantic model from the data in another Pydantic model. #### Unpacking a `dict` and extra keywords { #unpacking-a-dict-and-extra-keywords } And then adding the extra keyword argument `hashed_password=hashed_password`, like in: ```Python UserInDB(**user_in.model_dump(), hashed_password=hashed_password) ``` ...ends up being like:Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 20 15:55:38 UTC 2025 - 6.9K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/helper/KeyMatchHelper.java
if (map != null) { return map; } return Collections.emptyMap(); } /** * Builds a query for boosting documents based on the keyword list. * * @param keywordList The list of keywords. * @param list The list of filter function builders to add to. */ public void buildQuery(final List<String> keywordList, final List<FilterFunctionBuilder> list) {
Registered: Sat Dec 20 09:19:18 UTC 2025 - Last Modified: Fri Nov 28 16:29:12 UTC 2025 - 10.1K bytes - Viewed (0) -
docs/es/docs/tutorial/extra-models.md
Así, obtenemos un modelo Pydantic a partir de los datos en otro modelo Pydantic. #### Desempaquetando un `dict` y palabras clave adicionales { #unpacking-a-dict-and-extra-keywords } Y luego agregando el argumento de palabra clave adicional `hashed_password=hashed_password`, como en: ```Python UserInDB(**user_in.dict(), hashed_password=hashed_password) ``` ...termina siendo como:Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Dec 16 16:33:45 UTC 2025 - 7.6K bytes - Viewed (0) -
docs/de/docs/tutorial/extra-models.md
Auf diese Weise erhalten wir ein Pydantic-Modell aus den Daten eines anderen Pydantic-Modells. #### Ein `dict` entpacken und zusätzliche Schlüsselwort-Argumente { #unpacking-a-dict-and-extra-keywords } Und dann fügen wir das zusätzliche Schlüsselwort-Argument `hashed_password=hashed_password` hinzu, wie in: ```Python UserInDB(**user_in.model_dump(), hashed_password=hashed_password) ```Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 24 10:28:19 UTC 2025 - 8K bytes - Viewed (0) -
docs/pt/docs/tutorial/extra-models.md
Então, obtemos um modelo Pydantic a partir dos dados em outro modelo Pydantic. #### Desembrulhando um `dict` e palavras-chave extras { #unpacking-a-dict-and-extra-keywords } E, então, adicionando o argumento de palavra-chave extra `hashed_password=hashed_password`, como em: ```Python UserInDB(**user_in.dict(), hashed_password=hashed_password) ``` ...acaba sendo como:Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Nov 12 16:23:57 UTC 2025 - 7.5K bytes - Viewed (0) -
doc/go_spec.html
</pre> <pre> a _x9 ThisVariableIsExported αβ </pre> <p> Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>. </p> <h3 id="Keywords">Keywords</h3> <p> The following keywords are reserved and may not be used as identifiers. </p> <pre class="grammar"> break default func interface select case defer go map struct
Registered: Tue Dec 30 11:13:12 UTC 2025 - Last Modified: Tue Dec 02 23:07:19 UTC 2025 - 286.5K bytes - Viewed (1)