- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 15 for scalar10 (0.12 sec)
-
tensorflow/c/c_api_test.cc
TF_Operation* scalar3 = TF_GraphOperationByName(graph, "imported3/scalar"); TF_Operation* feed3 = TF_GraphOperationByName(graph, "imported3/feed"); TF_Operation* neg3 = TF_GraphOperationByName(graph, "imported3/neg"); ASSERT_TRUE(scalar3 != nullptr); ASSERT_TRUE(feed3 != nullptr); ASSERT_TRUE(neg3 != nullptr); // Check that newly-imported scalar and feed have control deps (neg3 will
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Fri Dec 27 12:18:10 UTC 2024 - 97K bytes - Viewed (0) -
docs/en/overrides/main.html
</div> <div class="item"> <a title="Scalar: Beautiful Open-Source API References from Swagger/OpenAPI files" style="display: block; position: relative;" href="https://github.com/scalar/scalar/?utm_source=fastapi&utm_medium=website&utm_campaign=top-banner" target="_blank"> <span class="sponsor-badge">sponsor</span> <img class="sponsor-image" src="/img/sponsors/scalar-banner.svg" /> </a> </div>
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 15:19:49 UTC 2025 - 4.5K bytes - Viewed (0) -
docs/en/data/sponsors.yml
img: https://fastapi.tiangolo.com/img/sponsors/blockbee.png - url: https://github.com/scalar/scalar/?utm_source=fastapi&utm_medium=website&utm_campaign=main-badge title: "Scalar: Beautiful Open-Source API References from Swagger/OpenAPI files" img: https://fastapi.tiangolo.com/img/sponsors/scalar.svg - url: https://www.propelauth.com/?utm_source=fastapi&utm_campaign=1223&utm_medium=mainbadge
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 15:19:49 UTC 2025 - 3.8K bytes - Viewed (0) -
docs/fr/docs/tutorial/body-multiple-params.md
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sat Nov 09 11:10:17 UTC 2024 - 5.6K bytes - Viewed (0) -
docs/en/data/sponsors_badge.yml
- nihpo - armand-sauzay - databento-bot - databento - nanram22 - Flint-company - porter-dev - fern-api - ndimares - svixhq - Alek99 - codacy - zanfaruqui - scalar - bump-sh - andrew-propelauth - svix - zuplo-oss - zuplo - Kong - speakeasy-api - jess-render - blockbee-io - liblaber - render-sponsorships - renderinc
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Thu Jul 31 18:20:49 UTC 2025 - 694 bytes - Viewed (0) -
README.md
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 15:19:49 UTC 2025 - 24.3K bytes - Viewed (0) -
docs/en/data/github_sponsors.yml
- login: railwayapp avatarUrl: https://avatars.githubusercontent.com/u/66716858?v=4 url: https://github.com/railwayapp - login: scalar avatarUrl: https://avatars.githubusercontent.com/u/301879?v=4 url: https://github.com/scalar - - login: dribia avatarUrl: https://avatars.githubusercontent.com/u/41189616?v=4 url: https://github.com/dribia - login: svix
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Fri Sep 05 08:58:22 UTC 2025 - 21.3K bytes - Viewed (0) -
lib/fips140/v1.0.0.zip
&y.s) return s } // Subtract sets s = x - y mod l, and returns s. func (s *Scalar) Subtract(x, y *Scalar) *Scalar { // s = -1 * y + x mod l fiatScalarSub(&s.s, &x.s, &y.s) return s } // Negate sets s = -x mod l, and returns s. func (s *Scalar) Negate(x *Scalar) *Scalar { // s = -1 * x + 0 mod l fiatScalarOpp(&s.s, &x.s) return s } // Multiply sets s = x * y mod l, and returns s. func (s *Scalar) Multiply(x, y *Scalar) *Scalar { // s = x * y + 0 mod l fiatScalarMul(&s.s, &x.s, &y.s) return s } // Set...
Registered: Tue Sep 09 11:13:09 UTC 2025 - Last Modified: Wed Jan 29 15:10:35 UTC 2025 - 635K bytes - Viewed (0) -
docs/en/docs/tutorial/response-model.md
You can use **type annotations** the same way you would for input data in function **parameters**, you can use Pydantic models, lists, dictionaries, scalar values like integers, booleans, etc. {* ../../docs_src/response_model/tutorial001_01_py310.py hl[16,21] *} FastAPI will use this return type to: * **Validate** the returned data.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 16K bytes - Viewed (0) -
RELEASE.md
Keras training loops like `fit`/`evaluate`, the unreduced vector loss is passed to the optimizer but the reported loss will be a scalar value. * `SUM`: Scalar sum of weighted losses. 4. `SUM_OVER_BATCH_SIZE`: Scalar `SUM` divided by number of elements in losses. This reduction type is not supported when used with `tf.distribute.Strategy` outside of
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Aug 18 20:54:38 UTC 2025 - 740K bytes - Viewed (1)