Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 54 for dividend (0.1 sec)

  1. android/guava/src/com/google/common/primitives/UnsignedLongs.java

      public static long divide(long dividend, long divisor) {
        if (divisor < 0) { // i.e., divisor >= 2^63:
          if (compare(dividend, divisor) < 0) {
            return 0; // dividend < divisor
          } else {
            return 1; // dividend >= divisor
          }
        }
    
        // Optimization - use signed division if dividend < 2^63
        if (dividend >= 0) {
          return dividend / divisor;
        }
    
        /*
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Mon Aug 12 21:04:48 UTC 2024
    - 17.6K bytes
    - Viewed (0)
  2. android/guava/src/com/google/common/primitives/UnsignedInts.java

      public static int divide(int dividend, int divisor) {
        return (int) (toLong(dividend) / toLong(divisor));
      }
    
      /**
       * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 32-bit
       * quantities.
       *
       * <p><b>Java 8+ users:</b> use {@link Integer#remainderUnsigned(int, int)} instead.
       *
       * @param dividend the dividend (numerator)
       * @param divisor the divisor (denominator)
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 30 21:17:54 UTC 2024
    - 13.7K bytes
    - Viewed (0)
  3. guava/src/com/google/common/primitives/UnsignedInts.java

      public static int divide(int dividend, int divisor) {
        return (int) (toLong(dividend) / toLong(divisor));
      }
    
      /**
       * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 32-bit
       * quantities.
       *
       * <p><b>Java 8+ users:</b> use {@link Integer#remainderUnsigned(int, int)} instead.
       *
       * @param dividend the dividend (numerator)
       * @param divisor the divisor (denominator)
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 30 21:17:54 UTC 2024
    - 13.7K bytes
    - Viewed (0)
  4. android/guava-tests/test/com/google/common/primitives/UnsignedIntsTest.java

        Random r = new Random(0L);
        for (int i = 0; i < 1000000; i++) {
          int dividend = r.nextInt();
          int divisor = r.nextInt();
          // Test that the Euclidean property is preserved:
          assertThat(
                  dividend
                      - (divisor * UnsignedInts.divide(dividend, divisor)
                          + UnsignedInts.remainder(dividend, divisor)))
              .isEqualTo(0);
        }
      }
    
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Sat Oct 19 02:56:12 UTC 2024
    - 12.5K bytes
    - Viewed (0)
  5. src/main/webapp/css/admin/bootstrap.min.css.map

    $rfs-base-font-size unit\n$rfs-base-font-size-unit: unit($rfs-base-font-size);\n\n@function divide($dividend, $divisor, $precision: 10) {\n  $sign: if($dividend > 0 and $divisor > 0 or $dividend < 0 and $divisor < 0, 1, -1);\n  $dividend: abs($dividend);\n  $divisor: abs($divisor);\n  @if $dividend == 0 {\n    @return 0;\n  }\n  @if $divisor == 0 {\n    @error \"Cannot divide by 0\";\n  }\n  $remainder: $dividend;\n  $result: 0;\n  $factor: 10;\n  @while ($remainder > 0 and $precision >= 0) {\n    $quotient:...
    Registered: Thu Oct 31 13:40:30 UTC 2024
    - Last Modified: Sat Oct 26 01:49:09 UTC 2024
    - 639.3K bytes
    - Viewed (0)
  6. doc/go1.17_spec.html

     x     y     x / y     x % y
     5     3       1         2
    -5     3      -1        -2
     5    -3      -1         2
    -5    -3       1        -2
    </pre>
    
    <p>
    The one exception to this rule is that if the dividend <code>x</code> is
    the most negative value for the int type of <code>x</code>, the quotient
    <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>)
    Registered: Tue Nov 05 11:13:11 UTC 2024
    - Last Modified: Thu Oct 10 18:25:45 UTC 2024
    - 211.6K bytes
    - Viewed (0)
  7. guava/src/com/google/common/math/BigIntegerMath.java

        }
      }
    
      /**
       * Returns the result of dividing {@code p} by {@code q}, rounding using the specified {@code
       * RoundingMode}.
       *
       * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
       *     is not an integer multiple of {@code b}
       */
      @GwtIncompatible // TODO
      public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode) {
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 16 17:21:56 UTC 2024
    - 18.8K bytes
    - Viewed (0)
  8. src/main/java/org/codelibs/fess/util/MemoryUtil.java

            } else if (size.divide(ONE_GB_BI).compareTo(BigInteger.ZERO) > 0) {
                displaySize = new BigDecimal(size.divide(ONE_MB_BI)).divide(BigDecimal.valueOf(1000)) + "GB";
            } else if (size.divide(ONE_MB_BI).compareTo(BigInteger.ZERO) > 0) {
                displaySize = new BigDecimal(size.divide(ONE_KB_BI)).divide(BigDecimal.valueOf(1000)) + "MB";
    Registered: Thu Oct 31 13:40:30 UTC 2024
    - Last Modified: Thu Feb 22 01:37:57 UTC 2024
    - 4.6K bytes
    - Viewed (0)
  9. android/guava/src/com/google/common/math/LongMath.java

        a >>= aTwos; // divide out all 2s
        int bTwos = Long.numberOfTrailingZeros(b);
        b >>= bTwos; // divide out all 2s
        while (a != b) { // both a, b are odd
          // The key to the binary GCD algorithm is as follows:
          // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
          // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
    
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 09 16:39:37 UTC 2024
    - 45.2K bytes
    - Viewed (0)
  10. guava/src/com/google/common/math/LongMath.java

        a >>= aTwos; // divide out all 2s
        int bTwos = Long.numberOfTrailingZeros(b);
        b >>= bTwos; // divide out all 2s
        while (a != b) { // both a, b are odd
          // The key to the binary GCD algorithm is as follows:
          // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
          // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
    
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 09 16:39:37 UTC 2024
    - 45.2K bytes
    - Viewed (0)
Back to top