- Sort Score
- Result 10 results
- Languages All
Results 1 - 9 of 9 for mypy (0.02 sec)
-
requirements-tests.txt
-e .[all] -r requirements-docs-tests.txt pytest >=7.1.3,<9.0.0 coverage[toml] >= 6.5.0,< 8.0 mypy ==1.14.1 dirty-equals ==0.9.0 sqlmodel==0.0.27 flask >=1.1.2,<4.0.0 strawberry-graphql >=0.200.0,< 1.0.0 anyio[trio] >=3.2.1,<5.0.0 PyJWT==2.9.0 pyyaml >=5.3.1,<7.0.0 pwdlib[argon2] >=0.2.1 inline-snapshot>=0.21.1 pytest-codspeed==4.2.0 # types types-ujson ==5.10.0.20240515
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Fri Dec 26 10:43:02 UTC 2025 - 394 bytes - Viewed (0) -
pyproject.toml
name = "fastapi-slim" [tool.mypy] plugins = ["pydantic.mypy"] strict = true [[tool.mypy.overrides]] module = "fastapi.concurrency" warn_unused_ignores = false ignore_missing_imports = true [[tool.mypy.overrides]] module = "fastapi.tests.*" ignore_missing_imports = true check_untyped_defs = true [[tool.mypy.overrides]] module = "docs_src.*"
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 27 12:54:56 UTC 2025 - 9.3K bytes - Viewed (0) -
scripts/lint.sh
#!/usr/bin/env bash set -e set -x mypy fastapi ruff check fastapi tests docs_src scripts
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Apr 30 00:03:14 UTC 2024 - 125 bytes - Viewed (0) -
docs/tr/docs/python-types.md
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Mon Nov 18 02:25:44 UTC 2024 - 9.5K bytes - Viewed (0) -
docs/zh/docs/python-types.md
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Mon Aug 18 06:34:40 UTC 2025 - 8.6K bytes - Viewed (0) -
docs/en/docs/features.md
* Because pydantic data structures are just instances of classes you define; auto-completion, linting, mypy and your intuition should all work properly with your validated data. * Validate **complex structures**: * Use of hierarchical Pydantic models, Python `typing`’s `List` and `Dict`, etc.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Oct 11 17:48:49 UTC 2025 - 9.5K bytes - Viewed (0) -
docs/en/docs/tutorial/dependencies/index.md
This will be especially useful when you use it in a **large code base** where you use **the same dependencies** over and over again in **many *path operations***.
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 9.6K bytes - Viewed (0) -
docs/zh/docs/features.md
* 没有新的模式定义 micro-language 需要学习。 * 如果你知道 Python types,你就知道如何使用 Pydantic。 * 和你 **<abbr title="集成开发环境,和代码编辑器类似">IDE</abbr>/<abbr title="一个检查代码错误的程序">linter</abbr>/brain** 适配: * 因为 pydantic 数据结构仅仅是你定义的类的实例;自动补全,linting,mypy 以及你的直觉应该可以和你验证的数据一起正常工作。 * 验证**复杂结构**: * 使用分层的 Pydantic 模型, Python `typing`的 `List` 和 `Dict` 等等。 * 验证器使我们能够简单清楚的将复杂的数据模式定义、检查并记录为 JSON Schema。 * 你可以拥有深度**嵌套的 JSON** 对象并对它们进行验证和注释。 * **可扩展**:Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Oct 11 17:48:49 UTC 2025 - 8.9K bytes - Viewed (0) -
docs/zh-hant/docs/features.md
* 如果你知道 Python 型別,你就知道如何使用 Pydantic。 * 和你的 **<abbr title="Integrated Development Environment,和程式碼編輯器類似">IDE</abbr>/<abbr title="一個檢查程式碼錯誤的工具">linter</abbr>/brain** 都能好好配合: * 因為 Pydantic 的資料結構其實就是你自己定義的類別實例,所以自動補齊、linting、mypy 以及你的直覺都能很好地在經過驗證的資料上發揮作用。 * 驗證**複雜結構**: * 使用 Pydantic 模型時,你可以把資料結構分層設計,並且用 Python 的 `List` 和 `Dict` 等型別來定義。 * 驗證器讓我們可以輕鬆地定義和檢查複雜的資料結構,並把它們轉換成 JSON Schema 進行記錄。 * 你可以擁有深層**巢狀的 JSON** 物件,並對它們進行驗證和註釋。 * **可擴展**:
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Oct 11 17:48:49 UTC 2025 - 9.6K bytes - Viewed (0)