Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 654 for Pydantics (0.12 sec)

  1. docs/de/docs/tutorial/body-fields.md

    /// note | "Technische Details"
    
    Tatsächlich erstellen `Query`, `Path` und andere, die sie kennenlernen werden, Instanzen von Unterklassen einer allgemeinen Klasse `Param`, die ihrerseits eine Unterklasse von Pydantics `FieldInfo`-Klasse ist.
    
    Und Pydantics `Field` gibt ebenfalls eine Instanz von `FieldInfo` zurück.
    
    `Body` gibt auch Instanzen einer Unterklasse von `FieldInfo` zurück. Und später werden Sie andere sehen, die Unterklassen der `Body`-Klasse sind.
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 3.9K bytes
    - Viewed (0)
  2. docs/de/docs/tutorial/body-updates.md

    ///
    
    ### Pydantics `exclude_unset`-Parameter verwenden
    
    Wenn Sie Teil-Aktualisierungen entgegennehmen, ist der `exclude_unset`-Parameter in der `.model_dump()`-Methode von Pydantic-Modellen sehr nützlich.
    
    Wie in `item.model_dump(exclude_unset=True)`.
    
    /// info
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 6.4K bytes
    - Viewed (0)
  3. docs/de/docs/advanced/dataclasses.md

    Auch wenn im obige Code Pydantic nicht explizit vorkommt, verwendet FastAPI Pydantic, um diese Standard-Datenklassen in Pydantics eigene Variante von Datenklassen zu konvertieren.
    
    Und natürlich wird das gleiche unterstützt:
    
    * Validierung der Daten
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 4.6K bytes
    - Viewed (0)
  4. docs/de/docs/tutorial/body.md

    Es verbessert die Editor-Unterstützung für Pydantic-Modelle, mit:
    
    * Code-Vervollständigung
    * Typüberprüfungen
    * Refaktorisierung
    * Suchen
    * Inspektionen
    
    ///
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 8K bytes
    - Viewed (0)
  5. docs/ko/docs/tutorial/body-nested-models.md

    ## 특별한 타입과 검증
    
    `str`, `int`, `float` 등과 같은 단일 타입과는 별개로, `str`을 상속하는 더 복잡한 단일 타입을 사용할 수 있습니다.
    
    모든 옵션을 보려면, <a href="https://docs.pydantic.dev/latest/concepts/types/" class="external-link" target="_blank">Pydantic's exotic types</a> 문서를 확인하세요. 다음 장에서 몇가지 예제를 볼 수 있습니다.
    
    예를 들어 `Image` 모델 안에 `url` 필드를 `str` 대신 Pydantic의 `HttpUrl`로 선언할 수 있습니다:
    
    ```Python hl_lines="4  10"
    {!../../docs_src/body_nested_models/tutorial005.py!}
    ```
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 7.6K bytes
    - Viewed (0)
  6. docs/ko/docs/tutorial/response-model.md

    {!../../docs_src/response_model/tutorial001.py!}
    ```
    
    /// note | "참고"
    
    `response_model`은 "데코레이터" 메소드(`get`, `post`, 등)의 매개변수입니다. 모든 매개변수들과 본문(body)처럼 *경로 작동 함수*가 아닙니다.
    
    ///
    
    Pydantic 모델 어트리뷰트를 선언한 것과 동일한 타입을 수신하므로 Pydantic 모델이 될 수 있지만, `List[Item]`과 같이 Pydantic 모델들의 `list`일 수도 있습니다.
    
    FastAPI는 이 `response_model`를 사용하여:
    
    * 출력 데이터를 타입 선언으로 변환.
    * 데이터 검증.
    * OpenAPI *경로 작동*의 응답에 JSON 스키마 추가.
    * 자동 생성 문서 시스템에 사용.
    
    하지만 가장 중요한 것은:
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 8.1K bytes
    - Viewed (0)
  7. docs/ko/docs/deployment/versions.md

    서로다른 버전의 **FastAPI**가 구체적이고 새로운 버전의 Starlette을 사용할 것입니다.
    
    그러므로 **FastAPI**가 알맞은 Starlette 버전을 사용하도록 하십시오.
    
    ## Pydantic에 대해
    
    Pydantic은 **FastAPI** 를 위한 검사를 포함하고 있습니다. 따라서, 새로운 버전의 Pydantic(`1.0.0`이상)은 항상 FastAPI와 호환됩니다.
    
    작업을 하고 있는 `1.0.0` 이상의 모든 버전과 `2.0.0` 이하의 Pydantic 버전을 표시할 수 있습니다.
    
    예를 들어 다음과 같습니다:
    
    ```txt
    pydantic>=1.2.0,<2.0.0
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Tue Aug 06 04:48:30 UTC 2024
    - 4.1K bytes
    - Viewed (0)
  8. docs/en/docs/advanced/dataclasses.md

    So, even with the code above that doesn't use Pydantic explicitly, FastAPI is using Pydantic to convert those standard dataclasses to Pydantic's own flavor of dataclasses.
    
    And of course, it supports the same:
    
    * data validation
    * data serialization
    * data documentation, etc.
    
    This works the same way as with Pydantic models. And it is actually achieved in the same way underneath, using Pydantic.
    
    /// info
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Mon Oct 28 10:35:06 UTC 2024
    - 4K bytes
    - Viewed (0)
  9. docs/en/docs/tutorial/body-updates.md

    ///
    
    ### Using Pydantic's `exclude_unset` parameter
    
    If you want to receive partial updates, it's very useful to use the parameter `exclude_unset` in Pydantic's model's `.model_dump()`.
    
    Like `item.model_dump(exclude_unset=True)`.
    
    /// info
    
    In Pydantic v1 the method was called `.dict()`, it was deprecated (but still supported) in Pydantic v2, and renamed to `.model_dump()`.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 5.6K bytes
    - Viewed (0)
  10. docs/en/docs/tutorial/query-param-models.md

    If you have a group of **query parameters** that are related, you can create a **Pydantic model** to declare them.
    
    This would allow you to **re-use the model** in **multiple places** and also to declare validations and metadata for all the parameters at once. 😎
    
    /// note
    
    This is supported since FastAPI version `0.115.0`. 🤓
    
    ///
    
    ## Query Parameters with a Pydantic Model
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 06 20:36:54 UTC 2024
    - 3.8K bytes
    - Viewed (0)
Back to top