- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 14 for GPU (0.02 sec)
-
tensorflow/c/README.md
- Nightly builds: - [Linux CPU-only](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow-cpu-linux-x86_64.tar.gz) - [Linux GPU](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow-gpu-linux-x86_64.tar.gz)
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Tue Oct 23 01:38:30 UTC 2018 - 539 bytes - Viewed (0) -
.github/bot_config.yml
cuda_comment: > From the template it looks like you are installing **TensorFlow** (TF) prebuilt binaries: * For TF-GPU - See point 1 * For TF-CPU - See point 2 ----------------------------------------------------------------------------------------------- **1. Installing **TensorFlow-GPU** (TF) prebuilt binaries** Make sure you are using compatible TF and CUDA versions.
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Jun 30 16:38:59 UTC 2025 - 4K bytes - Viewed (0) -
ci/official/utilities/rename_and_verify_wheels.sh
# Checks TFCI_BAZEL_COMMON_ARGS for "gpu" or "cuda", implying that the test is # relevant. All of the GPU test machines have CUDA installed via other means, # so I am not sure how to verify that the dependencies themselves are valid for # the moment. if [[ "$TFCI_BAZEL_COMMON_ARGS" =~ gpu|cuda ]]; then echo "Checking to make sure tensorflow[and-cuda] is installable..."
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Fri Apr 25 00:22:38 UTC 2025 - 4.7K bytes - Viewed (0) -
.github/ISSUE_TEMPLATE/tflite-other.md
false - type: input id: Cuda attributes: label: CUDA/cuDNN version description: placeholder: validations: required: false - type: input id: Gpu attributes: label: GPU model and memory description: if compiling from source placeholder: validations: required: false - type: textarea id: what-happened attributes: label: Current Behaviour?
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Thu Dec 29 22:28:29 UTC 2022 - 3.4K bytes - Viewed (0) -
.github/ISSUE_TEMPLATE/tensorflow_issue_template.yaml
attributes: label: GCC/compiler version description: If compiling from source - type: input id: Cuda attributes: label: CUDA/cuDNN version - type: input id: Gpu attributes: label: GPU model and memory description: If compiling from source - type: textarea id: what-happened attributes: label: Current behavior?
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Jun 28 18:25:42 UTC 2023 - 3.7K bytes - Viewed (0) -
ci/official/envs/linux_x86_cuda
TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_cuda TFCI_BUILD_PIP_PACKAGE_WHEEL_NAME_ARG="--repo_env=WHEEL_NAME=tensorflow" TFCI_DOCKER_ARGS="--gpus all" TFCI_LIB_SUFFIX="-gpu-linux-x86_64" # TODO: Set back to 610M once the wheel size is fixed.
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Tue Feb 18 22:52:46 UTC 2025 - 1.1K bytes - Viewed (0) -
ci/official/libtensorflow.sh
# limitations under the License. # ============================================================================== source "${BASH_SOURCE%/*}/utilities/setup.sh" # Record GPU count and CUDA version status if [[ "$TFCI_NVIDIA_SMI_ENABLE" == 1 ]]; then tfrun nvidia-smi fi # Update the version numbers for Nightly only if [[ "$TFCI_NIGHTLY_UPDATE_VERSION_ENABLE" == 1 ]]; then
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Fri Jan 24 20:17:08 UTC 2025 - 2K bytes - Viewed (0) -
SECURITY.md
### Hardware attacks Physical GPUs or TPUs can also be the target of attacks. [Published research](https://scholar.google.com/scholar?q=gpu+side+channel) shows that it might be possible to use side channel attacks on the GPU to leak data from other running models or processes in the same system. GPUs can also have implementation bugs that might allow attackers to leave malicious code running
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Oct 16 16:10:43 UTC 2024 - 9.6K bytes - Viewed (0) -
ci/official/README.md
You may invoke a CI script of your choice by following these instructions: ```bash cd tensorflow-git-dir # Here is a single-line example of running a script on Linux to build the # GPU version of TensorFlow for Python 3.12, using the public TF bazel cache and # a local build cache: TFCI=py312,linux_x86_cuda,public_cache,disk_cache ci/official/wheel.sh
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Thu Feb 01 03:21:19 UTC 2024 - 8K bytes - Viewed (0) -
ci/official/wheel.sh
# limitations under the License. # ============================================================================== source "${BASH_SOURCE%/*}/utilities/setup.sh" # Record GPU count and CUDA version status if [[ "$TFCI_NVIDIA_SMI_ENABLE" == 1 ]]; then tfrun nvidia-smi fi # Update the version numbers for Nightly only if [[ "$TFCI_NIGHTLY_UPDATE_VERSION_ENABLE" == 1 ]]; then
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Mar 03 17:29:53 UTC 2025 - 3.8K bytes - Viewed (0)