Search Options

Results per page
Sort
Preferred Languages
Advance

Results 41 - 50 of 216 for cpui (0.06 sec)

  1. docs/pt/docs/deployment/concepts.md

    Quanto dos recursos do sistema você quer consumir/utilizar? Pode ser fácil pensar "não muito", mas, na realidade, você provavelmente vai querer consumir **o máximo possível sem travar**.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Fri Oct 04 11:04:50 UTC 2024
    - 19.7K bytes
    - Viewed (0)
  2. docs/en/docs/deployment/concepts.md

    On the other hand, if you have 2 servers and you are using **100% of their CPU and RAM**, at some point one process will ask for more memory, and the server will have to use the disk as "memory" (which can be thousands of times slower), or even **crash**. Or one process might need to do some computation and would have to wait until the CPU is free again.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Wed Sep 18 16:09:57 UTC 2024
    - 17.8K bytes
    - Viewed (0)
  3. docs/de/docs/deployment/server-workers.md

    ## Zusammenfassung
    
    Sie können **Gunicorn** (oder auch Uvicorn) als Prozessmanager mit Uvicorn-Workern verwenden, um **Multikern-CPUs** zu nutzen und **mehrere Prozesse parallel** auszuführen.
    
    Sie können diese Tools und Ideen nutzen, wenn Sie **Ihr eigenes Deployment-System** einrichten und sich dabei selbst um die anderen Deployment-Konzepte kümmern.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Tue Aug 06 04:48:30 UTC 2024
    - 10.1K bytes
    - Viewed (0)
  4. docs/en/docs/deployment/server-workers.md

    ## Recap
    
    You can use multiple worker processes with the `--workers` CLI option with the `fastapi` or `uvicorn` commands to take advantage of **multi-core CPUs**, to run **multiple processes in parallel**.
    
    You could use these tools and ideas if you are setting up **your own deployment system** while taking care of the other deployment concepts yourself.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Wed Sep 18 16:09:57 UTC 2024
    - 8.7K bytes
    - Viewed (0)
  5. docs/metrics/v3.md

    | `minio_system_cpu_load_perc`  | CPU load average 1min (percentage). <br><br>Type: gauge | `server` |
    | `minio_system_cpu_nice`       | CPU nice time. <br><br>Type: gauge                      | `server` |
    | `minio_system_cpu_steal`      | CPU steal time. <br><br>Type: gauge                     | `server` |
    Registered: Sun Nov 03 19:28:11 UTC 2024
    - Last Modified: Fri Aug 02 22:30:11 UTC 2024
    - 45.2K bytes
    - Viewed (0)
  6. docs/metrics/prometheus/list.md

    | `minio_node_cpu_avg_system`          | CPU system time.                           |
    | `minio_node_cpu_avg_system_avg`      | CPU system time (avg).                     |
    | `minio_node_cpu_avg_system_max`      | CPU system time (max).                     |
    | `minio_node_cpu_avg_idle`            | CPU idle time.                             |
    Registered: Sun Nov 03 19:28:11 UTC 2024
    - Last Modified: Mon Jul 29 18:48:51 UTC 2024
    - 43.3K bytes
    - Viewed (0)
  7. docs/pt/docs/deployment/server-workers.md

    ## Recapitular
    
    Você pode usar vários processos de trabalho com a opção CLI `--workers` com os comandos `fastapi` ou `uvicorn` para aproveitar as vantagens de **CPUs multi-core** e executar **vários processos em paralelo**.
    
    Você pode usar essas ferramentas e ideias se estiver configurando **seu próprio sistema de implantação** enquanto cuida dos outros conceitos de implantação.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Fri Sep 20 11:01:03 UTC 2024
    - 9K bytes
    - Viewed (0)
  8. RELEASE.md

            *   `tf.raw_ops.Bucketize` op on CPU.
            *   `tf.where` op for data types
                `tf.int32`/`tf.uint32`/`tf.int8`/`tf.uint8`/`tf.int64`.
            *   `tf.random.normal` op for output data type `tf.float32` on CPU.
            *   `tf.random.uniform` op for output data type `tf.float32` on CPU.
            *   `tf.random.categorical` op for output data type `tf.int64` on CPU.
    
    *   `tensorflow.experimental.tensorrt`:
    
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Tue Oct 22 14:33:53 UTC 2024
    - 735.3K bytes
    - Viewed (0)
  9. .github/bot_config.yml

       
       
       Therefore on any CPU that does not have these instruction sets, either CPU or GPU version of TF will fail to load.
       
       Apparently, your CPU model does not support AVX instruction sets. You can still use TensorFlow with the alternatives given below:
       
          * Try Google Colab to use TensorFlow.
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Jul 15 05:00:54 UTC 2024
    - 4K bytes
    - Viewed (0)
  10. cmd/metrics-resource.go

    		cpuUser:           "CPU user time",
    		cpuSystem:         "CPU system time",
    		cpuIdle:           "CPU idle time",
    		cpuIOWait:         "CPU ioWait time",
    		cpuSteal:          "CPU steal time",
    		cpuNice:           "CPU nice time",
    		cpuLoad1:          "CPU load average 1min",
    		cpuLoad5:          "CPU load average 5min",
    		cpuLoad15:         "CPU load average 15min",
    Registered: Sun Nov 03 19:28:11 UTC 2024
    - Last Modified: Wed Jul 24 23:30:33 UTC 2024
    - 17.2K bytes
    - Viewed (0)
Back to top