- Sort Score
- Result 10 results
- Languages All
Results 41 - 50 of 775 for Learning (0.04 sec)
-
docs/ru/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[18,21,23] *} Вы отправите клиенту такой JSON-ответ: ```JSON { "model_name": "alexnet", "message": "Deep Learning FTW!" } ``` ## Path-параметры, содержащие пути { #path-parameters-containing-paths } Предположим, что есть *операция пути* с путем `/files/{file_path}`.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 14.2K bytes - Viewed (0) -
docs/en/docs/deployment/concepts.md
### Memory per Process { #memory-per-process } Now, when the program loads things in memory, for example, a machine learning model in a variable, or the contents of a large file in a variable, all that **consumes a bit of the memory (RAM)** of the server.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 18.6K bytes - Viewed (1) -
docs/zh/docs/tutorial/path-params.md
返回给客户端之前,要把枚举元素转换为对应的值(本例中为字符串): {* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *} 客户端中的 JSON 响应如下: ```JSON { "model_name": "alexnet", "message": "Deep Learning FTW!" } ``` ## 包含路径的路径参数 假设*路径操作*的路径为 `/files/{file_path}`。 但需要 `file_path` 中也包含*路径*,比如,`home/johndoe/myfile.txt`。 此时,该文件的 URL 是这样的:`/files/home/johndoe/myfile.txt`。Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Dec 15 16:43:19 UTC 2024 - 7.4K bytes - Viewed (0) -
docs/tr/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *} İstemci tarafında şuna benzer bir JSON yanıtı ile karşılaşırsınız: ```JSON { "model_name": "alexnet", "message": "Deep Learning FTW!" } ``` ## Yol İçeren Yol Parametreleri Farz edelim ki elinizde `/files/{file_path}` isminde bir *yol operasyonu* var.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 10:29:01 UTC 2025 - 10.5K bytes - Viewed (0) -
docs/en/docs/python-types.md
**FastAPI** is all based on these type hints, they give it many advantages and benefits. But even if you never use **FastAPI**, you would benefit from learning a bit about them. /// note If you are a Python expert, and you already know everything about type hints, skip to the next chapter. /// ## Motivation { #motivation } Let's start with a simple example:Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 15.6K bytes - Viewed (0) -
docs/ru/docs/async.md
### Конкурентность + параллелизм: Веб + Машинное обучение { #concurrency-parallelism-web-machine-learning } С **FastAPI** вы можете использовать преимущества конкурентности, что очень распространено в веб-разработке (это та же основная «фишка» NodeJS).Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Sep 30 11:24:39 UTC 2025 - 38.5K bytes - Viewed (0) -
docs/de/docs/deployment/concepts.md
### Serverspeicher { #server-memory } Wenn Ihr Code beispielsweise ein Machine-Learning-Modell mit **1 GB Größe** lädt und Sie einen Prozess mit Ihrer API ausführen, verbraucht dieser mindestens 1 GB RAM. Und wenn Sie **4 Prozesse** (4 Worker) starten, verbraucht jeder 1 GB RAM. Insgesamt verbraucht Ihre API also **4 GB RAM**.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Dec 02 17:32:56 UTC 2025 - 21.5K bytes - Viewed (0) -
docs/tr/docs/index.md
## Görüşler "_[...] Bugünlerde **FastAPI**'ı çok fazla kullanıyorum. [...] Aslında bunu ekibimin **Microsoft'taki Machine Learning servislerinin** tamamında kullanmayı planlıyorum. Bunlardan bazıları **Windows**'un ana ürünlerine ve **Office** ürünlerine entegre ediliyor._"
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Oct 11 17:48:49 UTC 2025 - 21.9K bytes - Viewed (0) -
docs/pt/docs/deployment/concepts.md
### Memória do servidor { #server-memory } Por exemplo, se seu código carrega um modelo de Machine Learning com **1 GB de tamanho**, quando você executa um processo com sua API, ele consumirá pelo menos 1 GB de RAM. E se você iniciar **4 processos** (4 trabalhadores), cada um consumirá 1 GB de RAM. Então, no total, sua API consumirá **4 GB de RAM**.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Nov 12 16:23:57 UTC 2025 - 20.5K bytes - Viewed (0) -
docs/en/docs/deployment/docker.md
If your application is **simple**, this will probably **not be a problem**, and you might not need to specify hard memory limits. But if you are **using a lot of memory** (for example with **machine learning** models), you should check how much memory you are consuming and adjust the **number of containers** that runs in **each machine** (and maybe add more machines to your cluster).
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Sep 20 12:58:04 UTC 2025 - 29.5K bytes - Viewed (1)