- Sort Score
- Result 10 results
- Languages All
Results 31 - 40 of 74 for salary (0.05 sec)
-
lib/fips140/v1.0.0.zip
&y.s) return s } // Subtract sets s = x - y mod l, and returns s. func (s *Scalar) Subtract(x, y *Scalar) *Scalar { // s = -1 * y + x mod l fiatScalarSub(&s.s, &x.s, &y.s) return s } // Negate sets s = -x mod l, and returns s. func (s *Scalar) Negate(x *Scalar) *Scalar { // s = -1 * x + 0 mod l fiatScalarOpp(&s.s, &x.s) return s } // Multiply sets s = x * y mod l, and returns s. func (s *Scalar) Multiply(x, y *Scalar) *Scalar { // s = x * y + 0 mod l fiatScalarMul(&s.s, &x.s, &y.s) return s } // Set...
Registered: Tue Sep 09 11:13:09 UTC 2025 - Last Modified: Wed Jan 29 15:10:35 UTC 2025 - 635K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/helper/ViewHelper.java
} break; case SAFARI: if (isLocalFile) { url = url.replaceFirst("file:/+", systemProperties.getProperty("file.protocol.winlocal.safari", "file://")); } else { url = url.replaceFirst("file:/+", systemProperties.getProperty("file.protocol.safari", "file:////")); } break; case OPERA:
Registered: Thu Sep 04 12:52:25 UTC 2025 - Last Modified: Thu Aug 07 03:06:29 UTC 2025 - 52.4K bytes - Viewed (0) -
tensorflow/c/c_api_experimental.h
// Platform-specific implementation to return an unused port. (This should used // in tests only.) TF_CAPI_EXPORT int TF_PickUnusedPortOrDie(void); // Fast path method that makes constructing a single scalar tensor require less // overhead and copies. TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewTensorHandleFromScalar( TF_DataType data_type, void* data, size_t len, TF_Status* status);
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Thu Apr 27 21:07:00 UTC 2023 - 15.1K bytes - Viewed (0) -
okhttp/src/commonJvmAndroid/kotlin/okhttp3/internal/http/RetryAndFollowUpInterceptor.kt
} return Integer.MAX_VALUE } companion object { /** * How many redirects and auth challenges should we attempt? Chrome follows 21 redirects; Firefox, * curl, and wget follow 20; Safari follows 16; and HTTP/1.0 recommends 5. */ private const val MAX_FOLLOW_UPS = 20 }
Registered: Fri Sep 05 11:42:10 UTC 2025 - Last Modified: Tue May 27 14:58:02 UTC 2025 - 12.4K bytes - Viewed (0) -
docs/pt/docs/tutorial/security/oauth2-jwt.md
Agora que temos todo o fluxo de segurança, vamos tornar a aplicação realmente segura, usando tokens <abbr title="JSON Web Tokens">JWT</abbr> e hashing de senhas seguras. Este código é algo que você pode realmente usar na sua aplicação, salvar os hashes das senhas no seu banco de dados, etc. Vamos começar de onde paramos no capítulo anterior e incrementá-lo. ## Sobre o JWT JWT significa "JSON Web Tokens".
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 10:49:48 UTC 2025 - 11K bytes - Viewed (0) -
docs/pt/docs/tutorial/security/simple-oauth2.md
### Confira a password (senha) Neste ponto temos os dados do usuário do nosso banco de dados, mas não verificamos a senha. Vamos colocar esses dados primeiro no modelo `UserInDB` do Pydantic. Você nunca deve salvar senhas em texto simples, portanto, usaremos o sistema de hashing de senhas (falsas). Se as senhas não corresponderem, retornaremos o mesmo erro. #### Hashing de senha
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Nov 18 02:25:44 UTC 2024 - 10K bytes - Viewed (0) -
docs/en/docs/tutorial/query-params-str-validations.md
Then with `random.choice()` we can get a **random value** from the list, so, we get a tuple with `(id, name)`. It will be something like `("imdb-tt0371724", "The Hitchhiker's Guide to the Galaxy")`. Then we **assign those two values** of the tuple to the variables `id` and `name`. So, if the user didn't provide an item ID, they will still receive a random suggestion.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 17.2K bytes - Viewed (0) -
docs/en/docs/tutorial/response-model.md
You can use **type annotations** the same way you would for input data in function **parameters**, you can use Pydantic models, lists, dictionaries, scalar values like integers, booleans, etc. {* ../../docs_src/response_model/tutorial001_01_py310.py hl[16,21] *} FastAPI will use this return type to: * **Validate** the returned data.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 16K bytes - Viewed (0) -
docs/uk/docs/tutorial/query-params-str-validations.md
Потім, використовуючи `random.choice()`, ми можемо отримати випадкове значення зі списку, тобто отримуємо кортеж із `(id, name)`. Це може бути щось на зразок `("imdb-tt0371724", "The Hitchhiker's Guide to the Galaxy")`. Далі ми **присвоюємо ці два значення** кортежу змінним `id` і `name`. Тож, якщо користувач не вказав ID елемента, він все одно отримає випадкову рекомендацію.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Fri May 30 14:17:24 UTC 2025 - 26.1K bytes - Viewed (0) -
RELEASE.md
Keras training loops like `fit`/`evaluate`, the unreduced vector loss is passed to the optimizer but the reported loss will be a scalar value. * `SUM`: Scalar sum of weighted losses. 4. `SUM_OVER_BATCH_SIZE`: Scalar `SUM` divided by number of elements in losses. This reduction type is not supported when used with `tf.distribute.Strategy` outside of
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Aug 18 20:54:38 UTC 2025 - 740K bytes - Viewed (1)