- Sort Score
- Result 10 results
- Languages All
Results 21 - 30 of 163 for cpu (0.01 sec)
-
ci/official/envs/macos_arm64
TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=macos_arm64 TFCI_BUILD_PIP_PACKAGE_WHEEL_NAME_ARG="--repo_env=WHEEL_NAME=tensorflow" TFCI_INDEX_HTML_ENABLE=1 TFCI_LIB_SUFFIX="-cpu-darwin-arm64" TFCI_MACOS_BAZEL_TEST_DIR_ENABLE=1 TFCI_MACOS_BAZEL_TEST_DIR_PATH="/Volumes/BuildData/bazel_output" TFCI_OUTPUT_DIR=build_output TFCI_WHL_BAZEL_TEST_ENABLE=1 TFCI_WHL_SIZE_LIMIT=245M
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Tue Apr 22 23:28:49 UTC 2025 - 1.4K bytes - Viewed (0) -
CONTRIBUTING.md
```bash tensorflow/tools/ci_build/ci_build.sh CPU tensorflow/tools/ci_build/ci_sanity.sh ``` This will catch most license, Python coding style and BUILD file issues that may exist in your changes. #### Running unit tests There are two ways to run TensorFlow unit tests. 1. Using tools and libraries installed directly on your system. Refer to theRegistered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Sat Jan 11 04:47:59 UTC 2025 - 15.9K bytes - Viewed (0) -
docs/compression/README.md
streaming compression due to its stability and performance. This algorithm is specifically optimized for machine generated content. Write throughput is typically at least 500MB/s per CPU core, and scales with the number of available CPU cores. Decompression speed is typically at least 1GB/s. This means that in cases where raw IO is below these numbers compression will not only reduce disk usage but also help increase system throughput.
Registered: Sun Dec 28 19:28:13 UTC 2025 - Last Modified: Tue Aug 12 18:20:36 UTC 2025 - 5.2K bytes - Viewed (0) -
ci/official/envs/linux_x86
TFCI_DOCKER_IMAGE=us-docker.pkg.dev/ml-oss-artifacts-published/ml-public-container/ml-build:latest TFCI_DOCKER_PULL_ENABLE=1 TFCI_DOCKER_REBUILD_ARGS="--target=devel ci/official/containers/ml_build" TFCI_INDEX_HTML_ENABLE=1 TFCI_LIB_SUFFIX="-cpu-linux-x86_64" TFCI_OUTPUT_DIR=build_output TFCI_WHL_AUDIT_ENABLE=1 TFCI_WHL_AUDIT_PLAT=manylinux_2_27_x86_64 TFCI_WHL_BAZEL_TEST_ENABLE=1 TFCI_WHL_SIZE_LIMIT=260M
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Wed Jul 16 22:21:17 UTC 2025 - 1.4K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/crawler/interval/FessIntervalController.java
this.delayMillisForWaitingNewUrl = delayMillisForWaitingNewUrl; } /** * Delays the crawler while waiting for new URLs to be available. * This method calibrates CPU load, checks crawler status, applies * interval control rules, and then calls the parent implementation. * All operations are wrapped in exception handling to ensure robustness * in test and production environments.Registered: Sat Dec 20 09:19:18 UTC 2025 - Last Modified: Wed Nov 19 07:09:17 UTC 2025 - 5.1K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/collect/MinMaxPriorityQueueBenchmark.java
} }; public abstract Queue<Integer> create(Comparator<Integer> comparator); } /** * Does a CPU intensive operation on Integer and returns a BigInteger Used to implement an * ordering that spends a lot of cpu. */ static class ExpensiveComputation implements Function<Integer, BigInteger> { @Override public BigInteger apply(Integer from) {Registered: Fri Dec 26 12:43:10 UTC 2025 - Last Modified: Sun Dec 22 03:38:46 UTC 2024 - 4.4K bytes - Viewed (0) -
docs/kms/IAM.md
- Reduced server startup time. For IAM encryption with the root credentials, MinIO had to use a memory-hard function (Argon2) that (on purpose) consumes a lot of memory and CPU. The new KMS-based approach can use a key derivation function that is orders of magnitudes cheaper w.r.t. memory and CPU. - Root credentials can now be changed easily. Before, a two-step process was required to
Registered: Sun Dec 28 19:28:13 UTC 2025 - Last Modified: Thu Jan 18 07:03:17 UTC 2024 - 5.3K bytes - Viewed (0) -
.github/workflows/arm-ci.yml
run: | CI_DOCKER_BUILD_EXTRA_PARAMS="--pull --build-arg py_major_minor_version=${{ matrix.pyver }} --build-arg is_nightly=1 --build-arg tf_project_name=tf_nightly_ci" \Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Mon Dec 01 09:57:00 UTC 2025 - 2.2K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/timer/SystemMonitorTarget.java
append(buf, "open", () -> processProbe.getOpenFileDescriptorCount()).append(','); append(buf, "max", () -> processProbe.getMaxFileDescriptorCount()); buf.append("},"); buf.append("\"cpu\":{"); append(buf, "percent", () -> processProbe.getProcessCpuPercent()).append(','); append(buf, "total", () -> processProbe.getProcessCpuTotalTime()); buf.append("},");
Registered: Sat Dec 20 09:19:18 UTC 2025 - Last Modified: Thu Jul 17 08:28:31 UTC 2025 - 7.8K bytes - Viewed (0) -
docs/zh/docs/deployment/server-workers.md
让我们回顾一下之前的部署概念: * 安全性 - HTTPS * 启动时运行 * 重新启动 * **复制(运行的进程数)** * 内存 * 启动前的先前步骤 到目前为止,在文档中的所有教程中,您可能一直是在运行一个**服务器程序**,例如使用 `fastapi` 命令来启动 Uvicorn,而它默认运行的是**单进程模式**。 部署应用程序时,您可能希望进行一些**进程复制**,以利用**多核** CPU 并能够处理更多请求。 正如您在上一章有关[部署概念](concepts.md){.internal-link target=_blank}中看到的,您可以使用多种策略。 在本章节中,我将向您展示如何使用 `fastapi` 命令或直接使用 `uvicorn` 命令以**多工作进程模式**运行 **Uvicorn**。 /// infoRegistered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Mon Mar 31 08:13:15 UTC 2025 - 8K bytes - Viewed (0)