- Sort Score
- Result 10 results
- Languages All
Results 21 - 30 of 206 for __inputs (0.12 sec)
-
tensorflow/c/eager/parallel_device/parallel_device.cc
} std::vector<TensorHandlePtr> components; components.reserve(inputs.size()); for (int i = 0; i < inputs.size(); ++i) { if (absl::holds_alternative<ParallelTensor*>(inputs[i])) { std::string message(absl::StrCat( "Expected all inputs to TPUReplicatedInput to be non-parallel " "TensorHandles. The input ", i, " was a parallel tensor (already "
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 18.3K bytes - Viewed (0) -
internal/config/etcd/etcd_test.go
package etcd import ( "reflect" "testing" ) // TestParseEndpoints - tests parseEndpoints function with valid and invalid inputs. func TestParseEndpoints(t *testing.T) { testCases := []struct { s string endpoints []string secure bool success bool }{ // Invalid inputs {"https://localhost:2379,http://localhost:2380", nil, false, false}, {",,,", nil, false, false}, {"", nil, false, false},
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Sun Jan 02 17:15:06 UTC 2022 - 2.1K bytes - Viewed (0) -
tensorflow/c/eager/gradients_test.cc
AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { Tape tape(/*persistent=*/false); tape.Watch(inputs[0]); AbstractTensorHandle* neg_output; TF_RETURN_IF_ERROR(ops::Neg(ctx, inputs[0], &neg_output, "Neg")); tape.RecordOperation(inputs, {neg_output}, nullptr, "Neg"); return tape.ComputeGradient(ctx,
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 7K bytes - Viewed (0) -
src/main/webapp/WEB-INF/view/admin/dict/synonym/admin_dict_synonym_edit.jsp
<label for="inputs" class="col-sm-3 text-sm-right col-form-label"><la:message key="labels.dict_synonym_source"/></label> <div class="col-sm-9"> <la:errors property="inputs"/> <la:textarea styleId="inputs" property="inputs" rows="5"
Registered: Thu Oct 31 13:40:30 UTC 2024 - Last Modified: Thu Feb 13 07:47:04 UTC 2020 - 7.5K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib.cc
std::vector<TFE_TensorHandle*> device_inputs; device_inputs.reserve(inputs.size()); for (int input_index = 0; input_index < inputs.size(); ++input_index) { // Parallel tensors are divided between operations by device. device_inputs.push_back(inputs[input_index]->tensor(device_index)); } device_thread->StartExecute(
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 25.9K bytes - Viewed (0) -
cmd/erasure-metadata_test.go
for i = 0; i < 8; i++ { fi := FileInfo{ TransitionTier: inputs[0].tier, TransitionedObjName: inputs[0].remoteObjName, TransitionVersionID: inputs[0].remoteVersionID, TransitionStatus: inputs[0].status, } ofi := fi if i&(1<<0) != 0 { ofi.TransitionTier = inputs[1].tier } if i&(1<<1) != 0 { ofi.TransitionedObjName = inputs[1].remoteObjName } if i&(1<<2) != 0 {
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Thu Jul 25 21:02:50 UTC 2024 - 13.5K bytes - Viewed (0) -
tensorflow/c/c_api_function_test.cc
// The first one will the function's output std::vector<TF_Output> outputs; // Add while loop to func_graph_ { // The inputs to the while loop std::vector<TF_Output> inputs = {{feed1, 0}, {feed2, 0}}; std::unique_ptr<TF_WhileParams> params(new TF_WhileParams( TF_NewWhile(func_graph_, &inputs[0], inputs.size(), s_)));
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Jul 20 22:08:54 UTC 2023 - 63.6K bytes - Viewed (0) -
tensorflow/c/eager/gradients.h
// watched inputs. void Watch(const AbstractTensorHandle*); // Records an operation with given inputs and outputs // on the tape and marks all its outputs as watched if at // least one input of the op is watched and has a trainable dtype. // op_name is optional and is used for debugging only. void RecordOperation(absl::Span<AbstractTensorHandle* const> inputs,
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 6.9K bytes - Viewed (0) -
docs/debugging/inspect/main.go
} } var inputs []string // Parse parameters switch { case *stdin: // Parse 'mc support inspect --json' output input := struct { File string `json:"file"` Key string `json:"key"` }{} got, err := io.ReadAll(os.Stdin) if err != nil { fatalErr(err) } fatalErr(json.Unmarshal(got, &input)) inputs = []string{input.File} *keyHex = input.Key
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Fri May 31 14:49:23 UTC 2024 - 5.2K bytes - Viewed (0) -
tensorflow/c/eager/gradient_checker.cc
absl::Span<AbstractTensorHandle* const> inputs, int input_index, bool use_function, AbstractTensorHandle** numerical_grad) { vector<AbstractTensorHandle*> theta_inputs(inputs.size()); for (int i{}; i < inputs.size(); ++i) { theta_inputs[i] = inputs[i]; } AbstractTensorHandle* theta =
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 7.3K bytes - Viewed (0)