- Sort Score
- Result 10 results
- Languages All
Results 11 - 20 of 849 for Pydantics (0.08 sec)
-
docs/ko/docs/deployment/versions.md
서로다른 버전의 **FastAPI**가 구체적이고 새로운 버전의 Starlette을 사용할 것입니다. 그러므로 **FastAPI**가 알맞은 Starlette 버전을 사용하도록 하십시오. ## Pydantic에 대해 Pydantic은 **FastAPI** 를 위한 검사를 포함하고 있습니다. 따라서, 새로운 버전의 Pydantic(`1.0.0`이상)은 항상 FastAPI와 호환됩니다. 작업을 하고 있는 `1.0.0` 이상의 모든 버전과 `2.0.0` 이하의 Pydantic 버전을 표시할 수 있습니다. 예를 들어 다음과 같습니다: ```txt pydantic>=1.2.0,<2.0.0
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 4.1K bytes - Viewed (0) -
docs/en/docs/advanced/dataclasses.md
So, even with the code above that doesn't use Pydantic explicitly, FastAPI is using Pydantic to convert those standard dataclasses to Pydantic's own flavor of dataclasses. And of course, it supports the same: * data validation * data serialization * data documentation, etc. This works the same way as with Pydantic models. And it is actually achieved in the same way underneath, using Pydantic. /// info
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Oct 28 10:35:06 UTC 2024 - 4K bytes - Viewed (0) -
docs/en/docs/tutorial/body-updates.md
/// ### Using Pydantic's `exclude_unset` parameter If you want to receive partial updates, it's very useful to use the parameter `exclude_unset` in Pydantic's model's `.model_dump()`. Like `item.model_dump(exclude_unset=True)`. /// info In Pydantic v1 the method was called `.dict()`, it was deprecated (but still supported) in Pydantic v2, and renamed to `.model_dump()`.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 5.6K bytes - Viewed (0) -
fastapi/encoders.py
from uuid import UUID from fastapi.types import IncEx from pydantic import BaseModel from pydantic.color import Color from pydantic.networks import AnyUrl, NameEmail from pydantic.types import SecretBytes, SecretStr from typing_extensions import Annotated, Doc from ._compat import PYDANTIC_V2, UndefinedType, Url, _model_dump # Taken from Pydantic v1 as is def isoformat(o: Union[datetime.date, datetime.time]) -> str:
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Thu Apr 18 21:56:59 UTC 2024 - 10.8K bytes - Viewed (0) -
docs/en/docs/tutorial/query-param-models.md
If you have a group of **query parameters** that are related, you can create a **Pydantic model** to declare them. This would allow you to **re-use the model** in **multiple places** and also to declare validations and metadata for all the parameters at once. 😎 /// note This is supported since FastAPI version `0.115.0`. 🤓 /// ## Query Parameters with a Pydantic Model
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 3.8K bytes - Viewed (0) -
docs/en/docs/tutorial/schema-extra-example.md
//// tab | Pydantic v2 In Pydantic version 2, you would use the attribute `model_config`, that takes a `dict` as described in <a href="https://docs.pydantic.dev/latest/api/config/" class="external-link" target="_blank">Pydantic's docs: Configuration</a>. You can set `"json_schema_extra"` with a `dict` containing any additional data you would like to show up in the generated JSON Schema, including `examples`. //// //// tab | Pydantic v1
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 11.6K bytes - Viewed (0) -
docs/en/docs/tutorial/body-fields.md
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 27 17:01:18 UTC 2024 - 2.2K bytes - Viewed (0) -
docs/en/docs/tutorial/header-param-models.md
If you have a group of related **header parameters**, you can create a **Pydantic model** to declare them. This would allow you to **re-use the model** in **multiple places** and also to declare validations and metadata for all the parameters at once. 😎 /// note This is supported since FastAPI version `0.115.0`. 🤓 /// ## Header Parameters with a Pydantic Model
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 3.5K bytes - Viewed (0) -
docs/en/docs/tutorial/cookie-param-models.md
## Cookies with a Pydantic Model Declare the **cookie** parameters that you need in a **Pydantic model**, and then declare the parameter as `Cookie`: //// tab | Python 3.10+ ```Python hl_lines="9-12 16" {!> ../../docs_src/cookie_param_models/tutorial001_an_py310.py!} ``` //// //// tab | Python 3.9+ ```Python hl_lines="9-12 16" {!> ../../docs_src/cookie_param_models/tutorial001_an_py39.py!} ``` ////
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 4K bytes - Viewed (0) -
docs/en/docs/tutorial/body.md
If you use <a href="https://www.jetbrains.com/pycharm/" class="external-link" target="_blank">PyCharm</a> as your editor, you can use the <a href="https://github.com/koxudaxi/pydantic-pycharm-plugin/" class="external-link" target="_blank">Pydantic PyCharm Plugin</a>. It improves editor support for Pydantic models, with: * auto-completion * type checks * refactoring * searching * inspections /// ## Use the model
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 27 16:58:19 UTC 2024 - 6.6K bytes - Viewed (0)