- Sort Score
- Result 10 results
- Languages All
Results 181 - 190 of 424 for models (0.07 sec)
-
docs/fr/docs/project-generation.md
...viendra surement plus tard, suivant le temps que j'ai. 😅 🎉 ## Modèles d'apprentissage automatique avec spaCy et FastAPI GitHub : <a href="https://github.com/microsoft/cookiecutter-spacy-fastapi" class="external-link" target="_blank">https://github.com/microsoft/cookiecutter-spacy-fastapi</a> ## Modèles d'apprentissage automatique avec spaCy et FastAPI - Fonctionnalités * Intégration d'un modèle NER **spaCy**.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Jul 29 23:35:07 UTC 2024 - 6.7K bytes - Viewed (0) -
CHANGELOG/CHANGELOG-1.28.md
- [CVE-2023-3955: Insufficient input sanitization on Windows nodes leads to privilege escalation](#cve-2023-3955-insufficient-input-sanitization-on-windows-nodes-leads-to-privilege-escalation) - [CVE-2023-3676: Insufficient input sanitization on Windows nodes leads to privilege escalation](#cve-2023-3676-insufficient-input-sanitization-on-windows-nodes-leads-to-privilege-escalation) - [Changes by Kind](#changes-by-kind-14)
Registered: Fri Nov 01 09:05:11 UTC 2024 - Last Modified: Wed Oct 23 04:34:59 UTC 2024 - 456.9K bytes - Viewed (0) -
docs/pt/docs/tutorial/body.md
{!../../docs_src/body/tutorial001.py!} ``` ## Crie seu modelo de dados Então você declara seu modelo de dados como uma classe que herda `BaseModel`. Utilize os tipos Python padrão para todos os atributos: ```Python hl_lines="7-11" {!../../docs_src/body/tutorial001.py!} ```
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 7.1K bytes - Viewed (0) -
docs/fr/docs/advanced/path-operation-advanced-configuration.md
En utilisant cette même astuce, vous pouvez utiliser un modèle Pydantic pour définir le schéma JSON qui est ensuite inclus dans la section de schéma OpenAPI personnalisée pour le *chemin* concerné. Et vous pouvez le faire même si le type de données dans la requête n'est pas au format JSON.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 8K bytes - Viewed (0) -
tests/test_response_model_as_return_annotation.py
}, } }, "/response_model_model1-annotation_model2-return_same_model": { "get": { "summary": "Response Model Model1 Annotation Model2 Return Same Model", "operationId": "response_model_model1_annotation_model2_return_same_model_response_model_model1_annotation_model2_return_same_model_get", "responses": {
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Aug 14 09:49:57 UTC 2023 - 47.7K bytes - Viewed (0) -
docs/ko/docs/tutorial/response-model.md
따라서 **FastAPI**는 출력 모델에서 선언하지 않은 모든 데이터를 (Pydantic을 사용하여) 필터링합니다. ## 문서에서 보기 자동 생성 문서를 보면 입력 모델과 출력 모델이 각자의 JSON 스키마를 가지고 있음을 확인할 수 있습니다: <img src="/img/tutorial/response-model/image01.png"> 그리고 두 모델 모두 대화형 API 문서에 사용됩니다: <img src="/img/tutorial/response-model/image02.png"> ## 응답 모델 인코딩 매개변수 응답 모델은 아래와 같이 기본값을 가질 수 있습니다: ```Python hl_lines="11 13-14" {!../../docs_src/response_model/tutorial004.py!} ```
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 8.1K bytes - Viewed (0) -
docs/pt/docs/how-to/separate-openapi-schemas.md
Inclusive, em alguns casos, ele terá até **dois JSON Schemas** no OpenAPI para o mesmo modelo Pydantic, para entrada e saída, dependendo se eles possuem **valores padrão**. Vamos ver como isso funciona e como alterar se for necessário. ## Modelos Pydantic para Entrada e Saída Digamos que você tenha um modelo Pydantic com valores padrão, como este: //// tab | Python 3.10+ ```Python hl_lines="7"
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Thu Oct 24 18:52:36 UTC 2024 - 6.8K bytes - Viewed (0) -
docs/pt/docs/project-generation.md
* Autenticação **Token JWT**. * Modelos **SQLAlchemy** (independente de extensões Flask, para que eles possam ser usados com _workers_ Celery diretamente). * Modelos básicos para usuários (modifique e remova conforme suas necessidades). * Migrações **Alembic**. * **CORS** (_Cross Origin Resource Sharing_ - Compartilhamento de Recursos Entre Origens). * _Worker_ **Celery** que pode importar e usar modelos e códigos do resto do _backend_ seletivamente.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Jul 29 23:35:07 UTC 2024 - 6.3K bytes - Viewed (0) -
docs/de/docs/advanced/events.md
Stellen wir uns vor, dass das Laden des Modells **eine ganze Weile dauern** kann, da viele **Daten von der Festplatte** gelesen werden müssen. Sie möchten das also nicht für jeden Request tun.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 9.1K bytes - Viewed (0) -
docs/de/docs/tutorial/body.md
Es verbessert die Editor-Unterstützung für Pydantic-Modelle, mit: * Code-Vervollständigung * Typüberprüfungen * Refaktorisierung * Suchen * Inspektionen /// ## Das Modell verwenden Innerhalb der Funktion können Sie alle Attribute des Modells direkt verwenden: //// tab | Python 3.10+ ```Python hl_lines="19"
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 8K bytes - Viewed (0)