- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 631 for Learning (0.03 sec)
-
docs/pt/llm-prompt.md
* cross origin: cross origin (do not translate to "origem cruzada") * Cross-Origin Resource Sharing: Cross-Origin Resource Sharing (do not translate to "Compartilhamento de Recursos de Origem Cruzada") * Deep Learning: Deep Learning (do not translate to "Aprendizado Profundo") * dependable: dependable * dependencies: dependências * deprecated: descontinuado * docs: documentação * FastAPI app: aplicação FastAPI
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 3.1K bytes - Viewed (0) -
docs/ru/llm-prompt.md
* production (meaning production software or environment): продакшн (do not change the ending, for example, translate `in production` as `в продакшн` (not `в продакшене`)) * completion (meaning code auto-completion): автозавершение * editor (meaning component of IDE): редактор кода * adopt (meaning start to use): использовать (or `начать использовать`) * headers (meaning HTTP-headers): HTTP-заголовки
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Mon Oct 06 11:09:58 UTC 2025 - 6K bytes - Viewed (0) -
docs/de/docs/_llm-test.md
* <abbr title="Eine Methode des Machine Learning, die künstliche neuronale Netze mit zahlreichen versteckten Schichten zwischen Eingabe- und Ausgabeschicht verwendet und so eine umfassende interne Struktur entwickelt">Deep Learning</abbr> ### Das abbr gibt eine vollständige Phrase und eine Erklärung { #the-abbr-gives-a-full-phrase-and-an-explanation }
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 07:17:04 UTC 2025 - 12.6K bytes - Viewed (0) -
docs/es/docs/async.md
Eso, más el simple hecho de que Python es el lenguaje principal para **Data Science**, Machine Learning y especialmente Deep Learning, hacen de FastAPI una muy buena opción para APIs web de Data Science / Machine Learning y aplicaciones (entre muchas otras).
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 10:15:01 UTC 2025 - 25.4K bytes - Viewed (0) -
docs/en/docs/advanced/events.md
## Use Case { #use-case } Let's start with an example **use case** and then see how to solve it with this. Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 7.9K bytes - Viewed (0) -
docs/pt/docs/advanced/events.md
## Caso de uso { #use-case } Vamos começar com um exemplo de **caso de uso** e então ver como resolvê-lo com isso. Vamos imaginar que você tem alguns **modelos de machine learning** que deseja usar para lidar com as requisições. 🤖Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 8.8K bytes - Viewed (0) -
docs/es/llm-prompt.md
* 100% test coverage: cobertura de tests del 100% * back and forth: de un lado a otro * I/O (as in "input and output"): I/O (do not translate to "E/S") * Machine Learning: Machine Learning (do not translate to "Aprendizaje Automático") * Deep Learning: Deep Learning (do not translate to "Aprendizaje Profundo") * callback hell: callback hell (do not translate to "infierno de callbacks") * tip: Consejo (do not translate to "tip")
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Dec 16 16:33:45 UTC 2025 - 5.4K bytes - Viewed (0) -
docs/en/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005_py39.py hl[1,6:9] *} /// tip If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>. /// ### Declare a *path parameter* { #declare-a-path-parameter }Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 9.2K bytes - Viewed (0) -
docs/es/docs/tutorial/path-params.md
/// tip | Consejo Si te estás preguntando, "AlexNet", "ResNet" y "LeNet" son solo nombres de <abbr title="Técnicamente, arquitecturas de modelos de Deep Learning">modelos</abbr> de Machine Learning. /// ### Declarar un *path parameter* { #declare-a-path-parameter } Luego crea un *path parameter* con una anotación de tipo usando la clase enum que creaste (`ModelName`):
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 9.8K bytes - Viewed (0) -
docs_src/path_params/tutorial005_py39.py
app = FastAPI() @app.get("/models/{model_name}") async def get_model(model_name: ModelName): if model_name is ModelName.alexnet: return {"model_name": model_name, "message": "Deep Learning FTW!"} if model_name.value == "lenet": return {"model_name": model_name, "message": "LeCNN all the images"}
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 546 bytes - Viewed (0)