Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 571 for Learning (0.05 sec)

  1. docs/pt/docs/async.md

    * **Machine Learning**: Normalmente exige muita multiplicação de matrizes e vetores. Pense numa grande planilha com números e em multiplicar todos eles juntos e ao mesmo tempo.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 23.6K bytes
    - Viewed (0)
  2. docs/es/llm-prompt.md

    * 100% test coverage: cobertura de tests del 100%
    * back and forth: de un lado a otro
    * I/O (as in "input and output"): I/O (do not translate to "E/S")
    * Machine Learning: Machine Learning (do not translate to "Aprendizaje Automático")
    * Deep Learning: Deep Learning (do not translate to "Aprendizaje Profundo")
    * callback hell: callback hell (do not translate to "infierno de callbacks")
    * tip: Consejo (do not translate to "tip")
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sat Jul 26 18:57:50 UTC 2025
    - 5.3K bytes
    - Viewed (0)
  3. docs/en/docs/advanced/events.md

    ## Use Case { #use-case }
    
    Let's start with an example **use case** and then see how to solve it with this.
    
    Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 7.9K bytes
    - Viewed (0)
  4. docs/id/docs/tutorial/path-params.md

    ///
    
    /// tip | Tips
    
    "AlxexNet", "ResNet", dan "LeNet" adalah nama <abbr title="Secara teknis, arsitektur model Deep Learning">model</abbr> *Machine Learning*.
    
    ///
    
    ### Mendeklarasikan *parameter path*
    
    Kemudian buat *parameter path* dengan tipe anotasi menggunakan *class* enum dari (`ModelName`)
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 8.8K bytes
    - Viewed (0)
  5. docs/es/docs/async.md

    * **Machine Learning**: normalmente requiere muchas multiplicaciones de "matrices" y "vectores". Piensa en una enorme hoja de cálculo con números y multiplicando todos juntos al mismo tiempo.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 24.7K bytes
    - Viewed (0)
  6. docs/en/docs/async.md

    * **Machine Learning**: it normally requires lots of "matrix" and "vector" multiplications. Think of a huge spreadsheet with numbers and multiplying all of them together at the same time.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 24K bytes
    - Viewed (0)
  7. docs/es/docs/advanced/events.md

    ## Caso de Uso
    
    Empecemos con un ejemplo de **caso de uso** y luego veamos cómo resolverlo con esto.
    
    Imaginemos que tienes algunos **modelos de machine learning** que quieres usar para manejar requests. 🤖
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Dec 30 18:26:57 UTC 2024
    - 8.2K bytes
    - Viewed (0)
  8. docs/en/docs/tutorial/path-params.md

    ///
    
    /// tip
    
    If you are wondering, "AlexNet", "ResNet", and "LeNet" are just names of Machine Learning <abbr title="Technically, Deep Learning model architectures">models</abbr>.
    
    ///
    
    ### Declare a *path parameter* { #declare-a-path-parameter }
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 9.3K bytes
    - Viewed (0)
  9. docs/es/docs/tutorial/path-params.md

    ///
    
    /// tip | Consejo
    
    Si te estás preguntando, "AlexNet", "ResNet" y "LeNet" son solo nombres de <abbr title="Técnicamente, arquitecturas de modelos de Deep Learning">modelos</abbr> de Machine Learning.
    
    ///
    
    ### Declarar un *path parameter*
    
    Luego crea un *path parameter* con una anotación de tipo usando la clase enum que creaste (`ModelName`):
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 9.4K bytes
    - Viewed (0)
  10. docs/fr/docs/async.md

    * L'apprentissage automatique (ou **Machine Learning**) : cela nécessite de nombreuses multiplications de matrices et vecteurs. Imaginez une énorme feuille de calcul remplie de nombres que vous multiplierez entre eux tous au même moment.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 25.4K bytes
    - Viewed (0)
Back to top