Search Options

Results per page
Sort
Preferred Languages
Advance

Results 151 - 160 of 1,116 for Model2 (0.04 sec)

  1. docs/en/mkdocs.yml

        - tutorial/query-param-models.md
        - tutorial/body-multiple-params.md
        - tutorial/body-fields.md
        - tutorial/body-nested-models.md
        - tutorial/schema-extra-example.md
        - tutorial/extra-data-types.md
        - tutorial/cookie-params.md
        - tutorial/header-params.md
        - tutorial/cookie-param-models.md
        - tutorial/header-param-models.md
        - tutorial/response-model.md
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 10:44:55 UTC 2025
    - 9.2K bytes
    - Viewed (0)
  2. fastapi/security/http.py

    import binascii
    from base64 import b64decode
    from typing import Annotated, Optional
    
    from annotated_doc import Doc
    from fastapi.exceptions import HTTPException
    from fastapi.openapi.models import HTTPBase as HTTPBaseModel
    from fastapi.openapi.models import HTTPBearer as HTTPBearerModel
    from fastapi.security.base import SecurityBase
    from fastapi.security.utils import get_authorization_scheme_param
    from pydantic import BaseModel
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 21:25:59 UTC 2025
    - 13.2K bytes
    - Viewed (0)
  3. docs/es/docs/how-to/migrate-from-pydantic-v1-to-pydantic-v2.md

    No está soportado por Pydantic tener un modelo de Pydantic v2 con sus propios campos definidos como modelos de Pydantic v1 o viceversa.
    
    ```mermaid
    graph TB
        subgraph "❌ Not Supported"
            direction TB
            subgraph V2["Pydantic v2 Model"]
                V1Field["Pydantic v1 Model"]
            end
            subgraph V1["Pydantic v1 Model"]
                V2Field["Pydantic v2 Model"]
            end
        end
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Tue Dec 16 16:16:35 UTC 2025
    - 5.6K bytes
    - Viewed (0)
  4. docs/es/docs/advanced/path-operation-advanced-configuration.md

    ////
    
    /// info | Información
    
    En la versión 1 de Pydantic el método para obtener el JSON Schema para un modelo se llamaba `Item.schema()`, en la versión 2 de Pydantic, el método se llama `Item.model_json_schema()`.
    
    ///
    
    Sin embargo, aunque no estamos usando la funcionalidad integrada por defecto, aún estamos usando un modelo Pydantic para generar manualmente el JSON Schema para los datos que queremos recibir en YAML.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 8.3K bytes
    - Viewed (0)
  5. docs/pt/docs/advanced/path-operation-advanced-configuration.md

    ////
    
    /// info | Informação
    
    Na versão 1 do Pydantic, o método para obter o JSON Schema de um modelo é `Item.schema()`, na versão 2 do Pydantic, o método é `Item.model_json_schema()`.
    
    ///
    
    Entretanto, mesmo que não utilizemos a funcionalidade integrada por padrão, ainda estamos usando um modelo Pydantic para gerar um JSON Schema manualmente para os dados que queremos receber no formato YAML.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 8.7K bytes
    - Viewed (0)
  6. .teamcity/subprojects.json

        "functionalTests": true,
        "crossVersionTests": false
      },
      {
        "name": "model-core",
        "path": "platforms/core-configuration/model-core",
        "unitTests": true,
        "functionalTests": true,
        "crossVersionTests": false
      },
      {
        "name": "model-groovy",
        "path": "platforms/core-configuration/model-groovy",
        "unitTests": true,
        "functionalTests": true,
        "crossVersionTests": false
    Registered: Wed Dec 31 11:36:14 UTC 2025
    - Last Modified: Thu Dec 18 18:40:11 UTC 2025
    - 37.5K bytes
    - Viewed (0)
  7. RELEASE.md

        *   `Model.fit_generator`, `Model.evaluate_generator`,
            `Model.predict_generator`, `Model.train_on_batch`,
            `Model.test_on_batch`, and `Model.predict_on_batch` methods now respect
            the `run_eagerly` property, and will correctly run using `tf.function`
            by default. Note that `Model.fit_generator`, `Model.evaluate_generator`,
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Tue Oct 28 22:27:41 UTC 2025
    - 740.4K bytes
    - Viewed (3)
  8. docs/ru/docs/tutorial/sql-databases.md

    ---> 100%
    ```
    
    </div>
    
    ## Создание приложения с единственной моделью { #create-the-app-with-a-single-model }
    
    Сначала мы создадим самую простую первую версию приложения с одной моделью **SQLModel**.
    
    Позже мы улучшим его, повысив безопасность и универсальность, добавив **несколько моделей**. 🤓
    
    ### Создание моделей { #create-models }
    
    Импортируйте `SQLModel` и создайте модель базы данных:
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Thu Dec 11 21:25:03 UTC 2025
    - 23.6K bytes
    - Viewed (0)
  9. docs/en/docs/tutorial/security/get-current-user.md

    ## Other models { #other-models }
    
    You can now get the current user directly in the *path operation functions* and deal with the security mechanisms at the **Dependency Injection** level, using `Depends`.
    
    And you can use any model or data for the security requirements (in this case, a Pydantic model `User`).
    
    But you are not restricted to using some specific data model, class or type.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 4K bytes
    - Viewed (0)
  10. docs/en/docs/tutorial/body-multiple-params.md

    ///
    
    ## Embed a single body parameter { #embed-a-single-body-parameter }
    
    Let's say you only have a single `item` body parameter from a Pydantic model `Item`.
    
    By default, **FastAPI** will then expect its body directly.
    
    But if you want it to expect a JSON with a key `item` and inside of it the model contents, as it does when you declare extra body parameters, you can use the special `Body` parameter `embed`:
    
    ```Python
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Sep 20 12:58:04 UTC 2025
    - 4.9K bytes
    - Viewed (0)
Back to top