- Sort Score
- Result 10 results
- Languages All
Results 101 - 110 of 363 for comparable (0.09 sec)
-
android/guava-testlib/test/com/google/common/testing/FreshValueGeneratorTest.java
Locale.class, Currency.class, List.class, Entry.class, Object.class, Equivalence.class, Predicate.class, Function.class, Comparable.class, Comparator.class, Ordering.class, Class.class, Type.class, TypeToken.class, TimeUnit.class, Ticker.class, Joiner.class,
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 17.3K bytes - Viewed (0) -
cmd/erasure-metadata-utils.go
"errors" "hash/crc32" "github.com/minio/pkg/v3/sync/errgroup" ) // counterMap type adds GetValueWithQuorum method to a map[T]int used to count occurrences of values of type T. type counterMap[T comparable] map[T]int // GetValueWithQuorum returns the first key which occurs >= quorum number of times. func (c counterMap[T]) GetValueWithQuorum(quorum int) (T, bool) { var zero T for x, count := range c {
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Fri Aug 29 02:39:48 UTC 2025 - 11.7K bytes - Viewed (0) -
docs/es/docs/async.md
Pero toda esta funcionalidad de usar código asíncrono con `async` y `await` a menudo se resume como utilizar "coroutines". Es comparable a la funcionalidad clave principal de Go, las "Goroutines". ## Conclusión Veamos la misma frase de arriba:
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 24.7K bytes - Viewed (0) -
android/guava/src/com/google/common/collect/Sets.java
*/ @SuppressWarnings({ "rawtypes", // https://github.com/google/guava/issues/989 "NonApiType", // acts as a direct substitute for a constructor call }) public static <E extends Comparable> TreeSet<E> newTreeSet() { return new TreeSet<>(); } /** * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their * natural ordering. *
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Aug 07 16:05:33 UTC 2025 - 81.6K bytes - Viewed (0) -
guava-tests/test/com/google/common/collect/ImmutableSetMultimapTest.java
.expectedValuesPerKey(1); builder.put("key", "value"); assertThat(builder.build().entries()).containsExactly(Maps.immutableEntry("key", "value")); } static class HashHostileComparable implements Comparable<HashHostileComparable> { final String string; public HashHostileComparable(String string) { this.string = string; } @Override public int hashCode() {
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Aug 07 16:05:33 UTC 2025 - 28.7K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/collect/ImmutableSetMultimapTest.java
.expectedValuesPerKey(1); builder.put("key", "value"); assertThat(builder.build().entries()).containsExactly(Maps.immutableEntry("key", "value")); } static class HashHostileComparable implements Comparable<HashHostileComparable> { final String string; public HashHostileComparable(String string) { this.string = string; } @Override public int hashCode() {
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Aug 07 16:05:33 UTC 2025 - 27K bytes - Viewed (0) -
docs/en/docs/deployment/concepts.md
An interesting detail is that the percentage of the **CPU used** by each process can **vary** a lot over time, but the **memory (RAM)** normally stays more or less **stable**. If you have an API that does a comparable amount of computations every time and you have a lot of clients, then the **CPU utilization** will probably *also be stable* (instead of constantly going up and down quickly).
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 18.6K bytes - Viewed (0) -
docs/es/docs/deployment/concepts.md
Un detalle interesante es que el porcentaje de **CPU utilizado** por cada proceso puede **variar** mucho con el tiempo, pero la **memoria (RAM)** normalmente permanece más o menos **estable**. Si tienes una API que hace una cantidad comparable de cálculos cada vez y tienes muchos clientes, entonces la **utilización de CPU** probablemente *también sea estable* (en lugar de constantemente subir y bajar rápidamente). ### Ejemplos de Herramientas y Estrategias de Replicación
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 19.3K bytes - Viewed (0) -
docs/en/docs/alternatives.md
Pydantic is a library to define data validation, serialization and documentation (using JSON Schema) based on Python type hints. That makes it extremely intuitive. It is comparable to Marshmallow. Although it's faster than Marshmallow in benchmarks. And as it is based on the same Python type hints, the editor support is great. /// check | **FastAPI** uses it to
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 23.6K bytes - Viewed (0) -
docs/es/docs/alternatives.md
Pydantic es un paquete para definir validación de datos, serialización y documentación (usando JSON Schema) basándose en las anotaciones de tipos de Python. Eso lo hace extremadamente intuitivo. Es comparable a Marshmallow. Aunque es más rápido que Marshmallow en benchmarks. Y como está basado en las mismas anotaciones de tipos de Python, el soporte del editor es estupendo. /// check | **FastAPI** lo usa para
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Dec 30 18:26:57 UTC 2024 - 25.4K bytes - Viewed (0)