- Sort Score
- Result 10 results
- Languages All
Results 81 - 90 of 252 for models3 (1.04 sec)
-
docs/fr/docs/tutorial/first-steps.md
Vous pouvez retourner un dictionnaire (`dict`), une liste (`list`), des valeurs seules comme des chaines de caractères (`str`) et des entiers (`int`), etc. Vous pouvez aussi retourner des models **Pydantic** (qui seront détaillés plus tard). Il y a de nombreux autres objets et modèles qui seront automatiquement convertis en JSON. Essayez d'utiliser vos favoris, il est fort probable qu'ils soient déjà supportés. ## Récapitulatif * Importez `FastAPI`.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sat Nov 09 16:39:20 UTC 2024 - 10.1K bytes - Viewed (0) -
docs/en/docs/how-to/separate-openapi-schemas.md
### Model for Input { #model-for-input } If you use this model as an input like here: {* ../../docs_src/separate_openapi_schemas/tutorial001_py310.py ln[1:15] hl[14] *} ...then the `description` field will **not be required**. Because it has a default value of `None`. ### Input Model in Docs { #input-model-in-docs }
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 4.6K bytes - Viewed (0) -
docs/en/docs/tutorial/sql-databases.md
We'll fix these things by adding a few **extra models**. Here's where SQLModel will shine. ✨ ### Create Multiple Models { #create-multiple-models } In **SQLModel**, any model class that has `table=True` is a **table model**. And any model class that doesn't have `table=True` is a **data model**, these ones are actually just Pydantic models (with a couple of small extra features). 🤓
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 15.4K bytes - Viewed (0) -
docs/en/docs/tutorial/body.md
It improves editor support for Pydantic models, with: * auto-completion * type checks * refactoring * searching * inspections /// ## Use the model { #use-the-model } Inside of the function, you can access all the attributes of the model object directly: {* ../../docs_src/body/tutorial002_py310.py *} /// info
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 10:58:56 UTC 2025 - 7.1K bytes - Viewed (0) -
compat/maven-compat/src/main/mdo/paramdoc.mdo
specific language governing permissions and limitations under the License. --> <model xmlns="http://modello.codehaus.org/MODELLO/1.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://modello.codehaus.org/MODELLO/1.0.0 http://modello.codehaus.org/xsd/modello-1.0.0.xsd" xml.namespace="http://maven.apache.org/PARAMDOC/${version}"
Registered: Sun Sep 07 03:35:12 UTC 2025 - Last Modified: Fri Oct 25 12:31:46 UTC 2024 - 5.4K bytes - Viewed (0) -
docs/pt/docs/tutorial/sql-databases.md
Vamos corrigir essas coisas adicionando alguns **modelos extras**. Aqui é onde o SQLModel vai brilhar. ✨ ### Criar Múltiplos Modelos No **SQLModel**, qualquer classe de modelo que tenha `table=True` é um **modelo de tabela**. E qualquer classe de modelo que não tenha `table=True` é um **modelo de dados**, esses são na verdade apenas modelos Pydantic (com alguns recursos extras pequenos). 🤓
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Oct 27 15:25:29 UTC 2024 - 15.8K bytes - Viewed (0) -
docs/es/docs/advanced/dataclasses.md
* documentación de datos, etc. Esto funciona de la misma manera que con los modelos de Pydantic. Y en realidad se logra de la misma manera internamente, utilizando Pydantic. /// info | Información Ten en cuenta que los dataclasses no pueden hacer todo lo que los modelos de Pydantic pueden hacer. Así que, podrías necesitar seguir usando modelos de Pydantic.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Dec 30 18:26:57 UTC 2024 - 4.4K bytes - Viewed (0) -
docs/pt/docs/advanced/dataclasses.md
* serialização de dados * documentação de dados, etc. Isso funciona da mesma forma que com os modelos Pydantic. E na verdade é alcançado da mesma maneira por baixo dos panos, usando Pydantic. /// info | Informação Lembre-se de que dataclasses não podem fazer tudo o que os modelos Pydantic podem fazer. Então, você ainda pode precisar usar modelos Pydantic.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Nov 18 02:25:44 UTC 2024 - 4.3K bytes - Viewed (0) -
docs/en/docs/advanced/events.md
## Use Case { #use-case } Let's start with an example **use case** and then see how to solve it with this. Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖 The same models are shared among requests, so, it's not one model per request, or one per user or something similar.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 7.9K bytes - Viewed (0) -
model.go
package gorm import "time" // Model a basic GoLang struct which includes the following fields: ID, CreatedAt, UpdatedAt, DeletedAt // It may be embedded into your model or you may build your own model without it // // type User struct { // gorm.Model // } type Model struct { ID uint `gorm:"primarykey"` CreatedAt time.Time UpdatedAt time.Time DeletedAt DeletedAt `gorm:"index"`
Registered: Sun Sep 07 09:35:13 UTC 2025 - Last Modified: Sat Feb 18 01:06:43 UTC 2023 - 396 bytes - Viewed (0)