Search Options

Results per page
Sort
Preferred Languages
Advance

Results 81 - 90 of 252 for models3 (1.04 sec)

  1. docs/fr/docs/tutorial/first-steps.md

    Vous pouvez retourner un dictionnaire (`dict`), une liste (`list`), des valeurs seules comme des chaines de caractères (`str`) et des entiers (`int`), etc.
    
    Vous pouvez aussi retourner des models **Pydantic** (qui seront détaillés plus tard).
    
    Il y a de nombreux autres objets et modèles qui seront automatiquement convertis en JSON. Essayez d'utiliser vos favoris, il est fort probable qu'ils soient déjà supportés.
    
    ## Récapitulatif
    
    * Importez `FastAPI`.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sat Nov 09 16:39:20 UTC 2024
    - 10.1K bytes
    - Viewed (0)
  2. docs/en/docs/how-to/separate-openapi-schemas.md

    ### Model for Input { #model-for-input }
    
    If you use this model as an input like here:
    
    {* ../../docs_src/separate_openapi_schemas/tutorial001_py310.py ln[1:15] hl[14] *}
    
    ...then the `description` field will **not be required**. Because it has a default value of `None`.
    
    ### Input Model in Docs { #input-model-in-docs }
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 4.6K bytes
    - Viewed (0)
  3. docs/en/docs/tutorial/sql-databases.md

    We'll fix these things by adding a few **extra models**. Here's where SQLModel will shine. ✨
    
    ### Create Multiple Models { #create-multiple-models }
    
    In **SQLModel**, any model class that has `table=True` is a **table model**.
    
    And any model class that doesn't have `table=True` is a **data model**, these ones are actually just Pydantic models (with a couple of small extra features). 🤓
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 15.4K bytes
    - Viewed (0)
  4. docs/en/docs/tutorial/body.md

    It improves editor support for Pydantic models, with:
    
    * auto-completion
    * type checks
    * refactoring
    * searching
    * inspections
    
    ///
    
    ## Use the model { #use-the-model }
    
    Inside of the function, you can access all the attributes of the model object directly:
    
    {* ../../docs_src/body/tutorial002_py310.py *}
    
    /// info
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:58:56 UTC 2025
    - 7.1K bytes
    - Viewed (0)
  5. compat/maven-compat/src/main/mdo/paramdoc.mdo

    specific language governing permissions and limitations
    under the License.
    -->
    
    <model xmlns="http://modello.codehaus.org/MODELLO/1.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xsi:schemaLocation="http://modello.codehaus.org/MODELLO/1.0.0 http://modello.codehaus.org/xsd/modello-1.0.0.xsd"
      xml.namespace="http://maven.apache.org/PARAMDOC/${version}"
    Registered: Sun Sep 07 03:35:12 UTC 2025
    - Last Modified: Fri Oct 25 12:31:46 UTC 2024
    - 5.4K bytes
    - Viewed (0)
  6. docs/pt/docs/tutorial/sql-databases.md

    Vamos corrigir essas coisas adicionando alguns **modelos extras**. Aqui é onde o SQLModel vai brilhar. ✨
    
    ### Criar Múltiplos Modelos
    
    No **SQLModel**, qualquer classe de modelo que tenha `table=True` é um **modelo de tabela**.
    
    E qualquer classe de modelo que não tenha `table=True` é um **modelo de dados**, esses são na verdade apenas modelos Pydantic (com alguns recursos extras pequenos). 🤓
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Oct 27 15:25:29 UTC 2024
    - 15.8K bytes
    - Viewed (0)
  7. docs/es/docs/advanced/dataclasses.md

    * documentación de datos, etc.
    
    Esto funciona de la misma manera que con los modelos de Pydantic. Y en realidad se logra de la misma manera internamente, utilizando Pydantic.
    
    /// info | Información
    
    Ten en cuenta que los dataclasses no pueden hacer todo lo que los modelos de Pydantic pueden hacer.
    
    Así que, podrías necesitar seguir usando modelos de Pydantic.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Dec 30 18:26:57 UTC 2024
    - 4.4K bytes
    - Viewed (0)
  8. docs/pt/docs/advanced/dataclasses.md

    * serialização de dados
    * documentação de dados, etc.
    
    Isso funciona da mesma forma que com os modelos Pydantic. E na verdade é alcançado da mesma maneira por baixo dos panos, usando Pydantic.
    
    /// info | Informação
    
    Lembre-se de que dataclasses não podem fazer tudo o que os modelos Pydantic podem fazer.
    
    Então, você ainda pode precisar usar modelos Pydantic.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 4.3K bytes
    - Viewed (0)
  9. docs/en/docs/advanced/events.md

    ## Use Case { #use-case }
    
    Let's start with an example **use case** and then see how to solve it with this.
    
    Let's imagine that you have some **machine learning models** that you want to use to handle requests. 🤖
    
    The same models are shared among requests, so, it's not one model per request, or one per user or something similar.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 7.9K bytes
    - Viewed (0)
  10. model.go

    package gorm
    
    import "time"
    
    // Model a basic GoLang struct which includes the following fields: ID, CreatedAt, UpdatedAt, DeletedAt
    // It may be embedded into your model or you may build your own model without it
    //
    //	type User struct {
    //	  gorm.Model
    //	}
    type Model struct {
    	ID        uint `gorm:"primarykey"`
    	CreatedAt time.Time
    	UpdatedAt time.Time
    	DeletedAt DeletedAt `gorm:"index"`
    Registered: Sun Sep 07 09:35:13 UTC 2025
    - Last Modified: Sat Feb 18 01:06:43 UTC 2023
    - 396 bytes
    - Viewed (0)
Back to top