- Sort Score
- Result 10 results
- Languages All
Results 81 - 90 of 170 for CPU (0.01 sec)
-
tensorflow/c/eager/immediate_execution_context.h
// Find and return a function record added by its name. virtual core::RefCountPtr<FunctionRecord> FindRecord( const string& name) const = 0; // Return the ParsedName of Host CPU device. virtual const DeviceNameUtils::ParsedName& HostCPUParsedName() const = 0; virtual const string& HostCPUName() const = 0; // Configure soft device placement policy.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 12.3K bytes - Viewed (0) -
docs/ru/docs/async.md
И поскольку большую часть времени выполнения занимает реальная работа (а не ожидание), а работу в компьютере делает <abbr title="Центральный процессор (CPU)">ЦП</abbr>, такие задачи называют <abbr title="CPU bound">ограниченными производительностью процессора</abbr>. --- Ограничение по процессору проявляется в операциях, где требуется выполнять сложные математические вычисления. Например:
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 39.9K bytes - Viewed (0) -
api/maven-api-cli/src/main/java/org/apache/maven/api/cli/mvn/MavenOptions.java
Optional<Boolean> alsoMakeDependents(); /** * Returns the number of threads used for parallel builds. * * @return an {@link Optional} containing the number of threads (or "1C" for one thread per CPU core), or empty if not specified */ @Nonnull Optional<String> threads(); /** * Returns the id of the build strategy to use. *
Registered: Sun Nov 03 03:35:11 UTC 2024 - Last Modified: Thu Oct 03 16:03:55 UTC 2024 - 8.3K bytes - Viewed (0) -
docs/en/docs/deployment/server-workers.md
## Deployment Concepts Here you saw how to use multiple **workers** to **parallelize** the execution of the application, take advantage of **multiple cores** in the CPU, and be able to serve **more requests**.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Wed Sep 18 16:09:57 UTC 2024 - 8.7K bytes - Viewed (0) -
android/guava/src/com/google/common/cache/Striped64.java
* using a secondary hash (Marsaglia XorShift) to try to find a * free slot. * * The table size is capped because, when there are more threads * than CPUs, supposing that each thread were bound to a CPU, * there would exist a perfect hash function mapping threads to * slots that eliminates collisions. When we reach capacity, we * search for this mapping by randomly varying the hash codes of
Registered: Fri Nov 01 12:43:10 UTC 2024 - Last Modified: Fri Jun 14 17:55:55 UTC 2024 - 11.5K bytes - Viewed (0) -
docs/zh/docs/async.md
但在这种情况下,如果你能带上 8 名前收银员/厨师,现在是清洁工一起清扫,他们中的每一个人(加上你)都能占据房子的一个区域来清扫,你就可以在额外的帮助下并行的更快地完成所有工作。 在这个场景中,每个清洁工(包括您)都将是一个处理器,完成这个工作的一部分。 由于大多数执行时间是由实际工作(而不是等待)占用的,并且计算机中的工作是由 <abbr title="Central Processing Unit">CPU</abbr> 完成的,所以他们称这些问题为"CPU 密集型"。 --- CPU 密集型操作的常见示例是需要复杂的数学处理。 例如: * **音频**或**图像**处理; * **计算机视觉**: 一幅图像由数百万像素组成,每个像素有3种颜色值,处理通常需要同时对这些像素进行计算; * **机器学习**: 它通常需要大量的"矩阵"和"向量"乘法。想象一个包含数字的巨大电子表格,并同时将所有数字相乘;
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 21.1K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_test.cc
ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); // Create a second parallel device with the first parallel device and one // additional CPU. const char* second_device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:1"; std::array<const char*, 2> second_underlying_devices{ "/job:localhost/replica:0/task:0/device:CUSTOM:0",
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Aug 06 23:56:17 UTC 2024 - 29.4K bytes - Viewed (0) -
CHANGELOG/CHANGELOG-1.3.md
* gce/kube-down: Parallelize IGM deletion, batch more ([#27302](https://github.com/kubernetes/kubernetes/pull/27302), [@zmerlynn](https://github.com/zmerlynn)) * Enable dynamic allocation of heapster/eventer cpu request/limit ([#27185](https://github.com/kubernetes/kubernetes/pull/27185), [@gmarek](https://github.com/gmarek))
Registered: Fri Nov 01 09:05:11 UTC 2024 - Last Modified: Thu Dec 24 02:28:26 UTC 2020 - 84K bytes - Viewed (0) -
docs/ja/docs/deployment/docker.md
/// ### 公式Dockerイメージのプロセス数 このイメージの**プロセス数**は、利用可能なCPU**コア**から**自動的に計算**されます。 つまり、CPUから可能な限り**パフォーマンス**を**引き出そう**とします。 また、**環境変数**などを使った設定で調整することもできます。 しかし、プロセスの数はコンテナが実行しているCPUに依存するため、**消費されるメモリの量**もそれに依存することになります。 そのため、(機械学習モデルなどで)大量のメモリを消費するアプリケーションで、サーバーのCPUコアが多いが**メモリが少ない**場合、コンテナは利用可能なメモリよりも多くのメモリを使おうとすることになります。 その結果、パフォーマンスが大幅に低下する(あるいはクラッシュする)可能性があります。🚨
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Aug 12 21:47:53 UTC 2024 - 44.3K bytes - Viewed (0) -
architecture/ambient/ztunnel.md
* Ensure traffic between mesh workloads is securely encrypted with an Istio identity. * Be lightweight enough to not limit adoption. * This puts a much tighter budget on CPU, memory, latency, and throughput requirements than traditional Istio sidecars. Ztunnel was not designed to be a feature-rich data plane.
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Wed Jul 17 23:10:17 UTC 2024 - 16.8K bytes - Viewed (0)