- Sort Score
- Result 10 results
- Languages All
Results 41 - 50 of 809 for Learning (0.07 sec)
-
tensorflow/c/eager/BUILD
], ) tf_cuda_library( name = "c_api_test_util", testonly = 1, srcs = ["c_api_test_util.cc"], hdrs = ["c_api_test_util.h"], visibility = [ "//learning/brain:__subpackages__", "//tensorflow:__subpackages__", ], deps = [ ":c_api", ":c_api_experimental", ":c_api_internal", "//tensorflow/c:c_test_util",
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Apr 11 23:52:39 UTC 2024 - 33.3K bytes - Viewed (0) -
docs/de/docs/async.md
* **Maschinelles Lernen**: Normalerweise sind viele „Matrix“- und „Vektor“-Multiplikationen erforderlich. Stellen Sie sich eine riesige Tabelle mit Zahlen vor, in der Sie alle Zahlen gleichzeitig multiplizieren.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 26.6K bytes - Viewed (0) -
docs/en/docs/python-types.md
**FastAPI** is all based on these type hints, they give it many advantages and benefits. But even if you never use **FastAPI**, you would benefit from learning a bit about them. /// note If you are a Python expert, and you already know everything about type hints, skip to the next chapter. /// ## Motivation Let's start with a simple example:
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sat Oct 26 11:47:53 UTC 2024 - 16.7K bytes - Viewed (0) -
docs/de/docs/deployment/concepts.md
### Serverspeicher Wenn Ihr Code beispielsweise ein Machine-Learning-Modell mit **1 GB Größe** lädt und Sie einen Prozess mit Ihrer API ausführen, verbraucht dieser mindestens 1 GB RAM. Und wenn Sie **4 Prozesse** (4 Worker) starten, verbraucht jeder 1 GB RAM. Insgesamt verbraucht Ihre API also **4 GB RAM**.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 20.6K bytes - Viewed (0) -
README.md
MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads.
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Sun Oct 13 13:34:11 UTC 2024 - 18.2K bytes - Viewed (0) -
docs/tr/docs/index.md
## Görüşler "_[...] Bugünlerde **FastAPI**'ı çok fazla kullanıyorum. [...] Aslında bunu ekibimin **Microsoft'taki Machine Learning servislerinin** tamamında kullanmayı planlıyorum. Bunlardan bazıları **Windows**'un ana ürünlerine ve **Office** ürünlerine entegre ediliyor._"
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Fri Aug 16 16:50:01 UTC 2024 - 21.9K bytes - Viewed (0) -
RELEASE.md
* Added warmup capabilities to `tf.keras.optimizers.schedules.CosineDecay` learning rate scheduler. You can now specify an initial and target learning rate, and our scheduler will perform a linear interpolation between the two after which it will begin a decay phase.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Oct 22 14:33:53 UTC 2024 - 735.3K bytes - Viewed (0) -
docs/pt/docs/deployment/concepts.md
### Memória do servidor Por exemplo, se seu código carrega um modelo de Machine Learning com **1 GB de tamanho**, quando você executa um processo com sua API, ele consumirá pelo menos 1 GB de RAM. E se você iniciar **4 processos** (4 trabalhadores), cada um consumirá 1 GB de RAM. Então, no total, sua API consumirá **4 GB de RAM**.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Fri Oct 04 11:04:50 UTC 2024 - 19.7K bytes - Viewed (0) -
helm-releases/minio-2.0.1.tgz
inio/blob/master/LICENSE) MinIO is a High Performance Object Storage released under GNU Affero General Public License v3.0. It is API compatible with Amazon S3 cloud storage service. Use MinIO to build high performance infrastructure for machine learning, analytics and application data workloads. For more detailed documentation please visit [here](https://docs.minio.io/) Introduction ---------- This chart bootstraps MinIO Cluster on [Kubernetes](http://kubernetes.io) using the [Helm](https://helm.sh)...
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Tue Aug 31 09:09:09 UTC 2021 - 13.6K bytes - Viewed (0) -
docs/en/docs/deployment/docker.md
If your application is **simple**, this will probably **not be a problem**, and you might not need to specify hard memory limits. But if you are **using a lot of memory** (for example with **machine learning** models), you should check how much memory you are consuming and adjust the **number of containers** that runs in **each machine** (and maybe add more machines to your cluster).
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Wed Sep 18 16:09:57 UTC 2024 - 28.5K bytes - Viewed (0)