- Sort Score
- Result 10 results
- Languages All
Results 31 - 40 of 198 for cpus (0.03 sec)
-
SECURITY.md
### Hardware attacks Physical GPUs or TPUs can also be the target of attacks. [Published research](https://scholar.google.com/scholar?q=gpu+side+channel) shows that it might be possible to use side channel attacks on the GPU to leak data from other running models or processes in the same system. GPUs can also have implementation bugs that might allow attackers to leave malicious code running
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Oct 16 16:10:43 UTC 2024 - 9.6K bytes - Viewed (0) -
docs/ko/docs/deployment/docker.md
/// ### 공식 도커 이미지에 있는 프로세스 개수 이 이미지에 있는 **프로세스 개수**는 가용한 CPU **코어들**로 부터 **자동으로 계산**됩니다. 이것이 의미하는 바는 이미지가 CPU로부터 **최대한의 성능**을 **쥐어짜낸다**는 것입니다. 여러분은 이 설정 값을 **환경 변수**나 기타 방법들로 조정할 수 있습니다. 그러나 프로세스의 개수가 컨테이너가 실행되고 있는 CPU에 의존한다는 것은 또한 **소요되는 메모리의 크기** 또한 이에 의존한다는 것을 의미합니다.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sat Nov 09 16:39:20 UTC 2024 - 42.7K bytes - Viewed (0) -
configure.py
Args: environ_cp: copy of the os.environ. var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". query_item: string for feature related to the variable, e.g. "CUDA for Nvidia GPUs". enabled_by_default: boolean for default behavior. question: optional string for how to ask for user input. yes_reply: optional string for reply when feature is enabled.
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Apr 30 15:18:54 UTC 2025 - 48.3K bytes - Viewed (0) -
ci/official/README.md
- Different Python versions - Linux, MacOS, and Windows machines (these pool definitions are internal) - x86 and arm64 - CPU-only, or with NVIDIA CUDA support (Linux only), or with TPUs ## How to Test Your Changes to TensorFlow You may check how your changes will affect TensorFlow by: 1. Creating a PR and observing the presubmit test results
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Thu Feb 01 03:21:19 UTC 2024 - 8K bytes - Viewed (0) -
WORKSPACE
load( "@rules_ml_toolchain//third_party/gpus/cuda/hermetic:cuda_json_init_repository.bzl", "cuda_json_init_repository", ) cuda_json_init_repository() load( "@cuda_redist_json//:distributions.bzl", "CUDA_REDISTRIBUTIONS", "CUDNN_REDISTRIBUTIONS", ) load( "@rules_ml_toolchain//third_party/gpus/cuda/hermetic:cuda_redist_init_repositories.bzl",
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Sep 03 23:57:17 UTC 2025 - 4.4K bytes - Viewed (0) -
docs/metrics/prometheus/list.md
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Tue Aug 12 18:20:36 UTC 2025 - 43.4K bytes - Viewed (0) -
cmd/metrics-resource.go
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Sun Mar 30 00:56:02 UTC 2025 - 17.2K bytes - Viewed (0) -
tensorflow/c/README.md
- Nightly builds: - [Linux CPU-only](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow-cpu-linux-x86_64.tar.gz) - [Linux GPU](https://storage.googleapis.com/tensorflow-nightly/github/tensorflow/lib_package/libtensorflow-gpu-linux-x86_64.tar.gz)
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Tue Oct 23 01:38:30 UTC 2018 - 539 bytes - Viewed (0) -
.github/bot_config.yml
Therefore on any CPU that does not have these instruction sets, either CPU or GPU version of TF will fail to load. Apparently, your CPU model does not support AVX instruction sets. You can still use TensorFlow with the alternatives given below: * Try Google Colab to use TensorFlow.
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Jun 30 16:38:59 UTC 2025 - 4K bytes - Viewed (0) -
fess-crawler-lasta/src/main/resources/crawler/extractor.xml
"application/vnd.criticaltools.wbs+xml", "application/vnd.ctc-posml", "application/vnd.ctct.ws+xml", "application/vnd.cups-pdf", "application/vnd.cups-postscript", "application/vnd.cups-ppd", "application/vnd.cups-raster", "application/vnd.cups-raw", "application/vnd.curl.car", "application/vnd.curl.pcurl", "application/vnd.cybank", "application/vnd.data-vision.rdz",
Registered: Sun Sep 21 03:50:09 UTC 2025 - Last Modified: Sat Aug 01 21:40:30 UTC 2020 - 49K bytes - Viewed (0)