- Sort Score
- Result 10 results
- Languages All
Results 171 - 180 of 524 for model2 (0.03 sec)
-
docs/de/docs/advanced/path-operation-advanced-configuration.md
//// /// info In Pydantic Version 1 hieß die Methode zum Abrufen des JSON-Schemas für ein Modell `Item.schema()`, in Pydantic Version 2 heißt die Methode `Item.model_json_schema()`. /// Obwohl wir nicht die standardmäßig integrierte Funktionalität verwenden, verwenden wir dennoch ein Pydantic-Modell, um das JSON-Schema für die Daten, die wir in YAML empfangen möchten, manuell zu generieren.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Nov 18 02:25:44 UTC 2024 - 8.3K bytes - Viewed (0) -
compat/maven-compat/src/main/java/org/apache/maven/toolchain/ToolchainsBuilder.java
* specific language governing permissions and limitations * under the License. */ package org.apache.maven.toolchain; import java.io.File; import org.apache.maven.toolchain.model.PersistedToolchains; /** * Builds the toolchains model from a previously configured filesystem path to the toolchains file. * <strong>Note:</strong> This is an internal component whose interface can change without prior notice. *
Registered: Sun Sep 07 03:35:12 UTC 2025 - Last Modified: Fri Oct 25 12:31:46 UTC 2024 - 1.8K bytes - Viewed (0) -
compat/maven-compat/src/main/java/org/apache/maven/profiles/DefaultProfileManager.java
import java.util.List; import java.util.Map; import java.util.Properties; import org.apache.maven.model.Activation; import org.apache.maven.model.Profile; import org.apache.maven.model.building.ModelProblem; import org.apache.maven.model.profile.DefaultProfileActivationContext; import org.apache.maven.model.profile.ProfileSelector; import org.apache.maven.profiles.activation.ProfileActivationException;
Registered: Sun Sep 07 03:35:12 UTC 2025 - Last Modified: Fri Jun 06 14:28:57 UTC 2025 - 6.9K bytes - Viewed (0) -
docs/en/docs/tutorial/encoder.md
The same way, this database wouldn't receive a Pydantic model (an object with attributes), only a `dict`. You can use `jsonable_encoder` for that. It receives an object, like a Pydantic model, and returns a JSON compatible version: {* ../../docs_src/encoder/tutorial001_py310.py hl[4,21] *} In this example, it would convert the Pydantic model to a `dict`, and the `datetime` to a `str`.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 1.7K bytes - Viewed (0) -
compat/maven-compat/src/main/java/org/apache/maven/profiles/ProfilesConversionUtils.java
* under the License. */ package org.apache.maven.profiles; import java.util.List; import org.apache.maven.model.Activation; import org.apache.maven.model.ActivationFile; import org.apache.maven.model.ActivationProperty; import org.apache.maven.model.Profile; import org.apache.maven.model.Repository; /** * ProfilesConversionUtils */ @Deprecated public class ProfilesConversionUtils {
Registered: Sun Sep 07 03:35:12 UTC 2025 - Last Modified: Fri Oct 25 12:31:46 UTC 2024 - 4.8K bytes - Viewed (0) -
association.go
Registered: Sun Sep 07 09:35:13 UTC 2025 - Last Modified: Wed Jun 12 10:49:45 UTC 2024 - 21.5K bytes - Viewed (0) -
tests/soft_delete_test.go
user := *GetUser("SoftDelete", Config{}) DB.Save(&user) var count int64 var age uint if DB.Model(&User{}).Where("name = ?", user.Name).Count(&count).Error != nil || count != 1 { t.Errorf("Count soft deleted record, expects: %v, got: %v", 1, count) } if DB.Model(&User{}).Select("age").Where("name = ?", user.Name).Scan(&age).Error != nil || age != user.Age {
Registered: Sun Sep 07 09:35:13 UTC 2025 - Last Modified: Wed Feb 01 06:40:55 UTC 2023 - 5.7K bytes - Viewed (0) -
callbacks.go
stmt.Context, _ = context.WithTimeout(stmt.Context, db.DefaultContextTimeout) } } // assign model values if stmt.Model == nil { stmt.Model = stmt.Dest } else if stmt.Dest == nil { stmt.Dest = stmt.Model } // parse model values if stmt.Model != nil {
Registered: Sun Sep 07 09:35:13 UTC 2025 - Last Modified: Tue Aug 26 06:24:29 UTC 2025 - 8.8K bytes - Viewed (0) -
docs/de/docs/tutorial/encoder.md
Genauso würde die Datenbank kein Pydantic-Modell (ein Objekt mit Attributen) akzeptieren, sondern nur ein `dict`. Sie können für diese Fälle `jsonable_encoder` verwenden. Es nimmt ein Objekt entgegen, wie etwa ein Pydantic-Modell, und gibt eine JSON-kompatible Version zurück: {* ../../docs_src/encoder/tutorial001_py310.py hl[4,21] *}
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Nov 18 02:25:44 UTC 2024 - 1.8K bytes - Viewed (0) -
docs/es/docs/tutorial/encoder.md
De la misma manera, esta base de datos no recibiría un modelo de Pydantic (un objeto con atributos), solo un `dict`. Puedes usar `jsonable_encoder` para eso. Recibe un objeto, como un modelo de Pydantic, y devuelve una versión compatible con JSON: {* ../../docs_src/encoder/tutorial001_py310.py hl[4,21] *} En este ejemplo, convertiría el modelo de Pydantic a un `dict`, y el `datetime` a un `str`.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Dec 30 18:26:57 UTC 2024 - 1.7K bytes - Viewed (0)